Residual Heat Estimation by Image Processing Using Cherenkov Radiation in TRR

M.Arkani
Department of Nuc. Eng.
Azad University, Tehran, Iran

M.Gharib
Tehran Research Reactor
Nuc. Research Center
AEOI, Tehran, Iran

RRFM 2007
Lyon-France
AIM

• Initial Approach
 – Using existing CCTV camera system
 – Derive a relationship between core light intensity vs. power
 – Later, due to saturation problem & auto iris, another approach employed

• Present Approach
 – PC-camera to look after shutdown glow
 – Check if Cherenkov light fits with decay heat
INSTRUMENTATION

• CMOS sensor at the heart of camera
• Core image formed on an array 640 x 480
• Each color of RGB : 0-255
• Pixels are scanned : bit-map-format
• Output signal : total intensity of core image
 – If all pixels are ON,
 – If all colors at peak,
 – Then \((signal)_{\text{max}} = 3 \times 255 \times (640 \times 480)\)
 \[= 235,008,000\]
• All numbers are normalized WRT total intensity right after shutdown
Imaging System prior to deployment
Collimator length ~ 1.4 m
Imaging System prior to deployment (within wooden frame)
Housing to protect camera & circuit
Experimental Setup

Diagram showing the connections between a computer, camera, mirror, collimator, glass, and water.
Technical Specification of Setup

CAMERA
- High-quality VGA CMOS sensor
- Manual control (no auto Iris)
- Video capture: 640 480 pixels
- Frame rate: 15 frame/sec at QVGA resolution
- USB port

PC SYSTEM
- Windows 2003, XP
- Pentium IV 2.8 GHz, full cash, Intel
- 512 MB RAM
- Programming environment: Delphi 7
TRR core configuration #23

Core Configuration 23

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>IR BOX</td>
<td>A121</td>
<td>A146</td>
<td>A135</td>
<td>A67</td>
<td>IR BOX</td>
</tr>
<tr>
<td>B</td>
<td>GR BOX</td>
<td>N.S</td>
<td>A62</td>
<td>A70</td>
<td>AS 27 SR1</td>
<td>A150</td>
<td>AS 26 RR</td>
<td>GR BOX</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>A64</td>
<td>A147</td>
<td>AS 25 SR4</td>
<td>A75</td>
<td>A112</td>
<td>A111</td>
<td>GR BOX</td>
</tr>
<tr>
<td>D</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>A136</td>
<td>A66</td>
<td>A63</td>
<td>IR BOX</td>
<td>A115</td>
<td>AS 23 SR2</td>
<td>GR BOX</td>
</tr>
<tr>
<td>E</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>IR BOX</td>
<td>A148</td>
<td>A149</td>
<td>AS 28 SR3</td>
<td>A137</td>
<td>A144</td>
<td>IR BOX</td>
</tr>
<tr>
<td>F</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>GR BOX</td>
<td>IR BOX</td>
<td>A145</td>
<td>A151</td>
<td>A139</td>
<td>Fresh A65</td>
<td>GR BOX</td>
</tr>
</tbody>
</table>
TRR core top view

Core ~ 8 m below pool level
Image of core seen by PC-camera
Decay Heat After Shutdown
Way-Wigner Vs. ORIGEN

$P(t)/P_0$ (%)

Time After Shutdown (Sec)

$P_0 = 4$ MW
$T = 96$ hours
Heat Rate After Shutdown
Delayed Neutronic Vs. Decay Heat

Po=4 MW
Λ=45 μsec
β=0.0077
Measured Cherenkov Light Vs. Total Heat Rate Release in TRR

- **PC-Camera Response (Cherenkov Light)**
- **PC-Camera Response (B/G Subtracted)**
- **Total Heat generation after shutdown**

The graph shows the decay of Cherenkov light and total heat release with time after shutdown. The x-axis represents time in seconds, while the y-axis shows the normalized response of the PC-camera. The data points indicate a significant decrease in both Cherenkov light and total heat generation over time.
RESULTS & DISCUSSIONS

- Continuous run of 96 hours at Po= 4 MW
- Reactor scram with all 4 shim rods
- Cherenkov radiation monitored after shutdown up to 100 hours
- Total heat rate estimated:
 \[\text{Decay heat + Neutronic power} \]
- PC-camera response are recorded by computer
- General trends are satisfactory
- Contribution of gammas to heat are NOT the same for: Neutronic & decay heat
CONCLUSIONS

• Real time monitoring for open pool reactors
• Independent channel for post shutdown
• Indirect measurement for decay heat
• Long distance from core
• Out of water system
• Low price