MONTE-CARLO COUPLED DEPLETION CODES EFFICIENCY FOR RESEARCH REACTOR DESIGN

E. Privas, C. Bouret, S. Nicolas, L. Manifacier
December 5th – 18th IGORRR Conference 2017
Introduction

- **TechnicAtome**: specializes in the design, construction, operation and maintenance of compact nuclear reactors

- **Early stages of core design** and industrial studies require a **quick and efficient calculation** of key neutronic parameters at any time
 - Mainly achieved by **deterministic calculation schemes**
 - COCONEUT (COre COnception NEUtronic Tool)

- Nevertheless
 - Deterministic codes: **problem dependent / V&V process** for various kinds of cores
 - Improvement of CPU power: Monte-Carlo burnup calculations for industrial studies

- **Aims of this paper:**
 - Monte-Carlo burnup codes for industrial studies *(TRIPOLI4®, MCNP, Serpent)*
 - Describe a case study part of the V&V process undergone by COCONEUT

- **Case study:**
 - A multipurpose dummy core designed by TechnicAtome
Contents

1. Depletion calculation methods

2. Codes used in this study

3. Case study: Dummy core

4. Results and Analysis

5. Conclusion and Outlooks
Contents

1. Depletion calculation methods

2. Codes used in this study

3. Case study: Dummy core

4. Results and Analysis

5. Conclusion and Outlooks
Depletion calculation methods (1/2)

General diagram for depletion calculation

- Step 1: Deterministic
 - New compositions calculation
 - 1st or 2nd order methods

- Step 2: Material balance 2

- Step 3: Material balance 3

Deterministic / stochastic calculation?
Depletion calculation methods (2/2)

Deterministic approach
- Fast method for flux calculation → industrial studies
- Cross sections collapsing
- Self shielding
- Spatial mesh
- Time related mesh
- Geometry dependent

Approximations / biases to quantify

Stochastic approach
- Exact 3D geometry
- Punctual XS for flux calculation
- **Slower** than deterministic calculation
- Statistical uncertainties
- Spatial mesh for depletion
- Time related mesh

Results depending on statistical convergence
- Uncertainties propagation
- Time consuming
Contents

1. Depletion calculation methods

2. Codes used in this study

3. Case study: Dummy core

4. Results and Analysis

5. Conclusion and Outlooks
Codes used in this study: **MC codes**

TRIPOLI4®
- Code developed by CEA (French Alternative Energies and Atomic Energy Commission)
- **Safety studies reference** at TechnicAtome
- Polyvalent code
- Large V&V process
- **Root based interfaces** (pre / post processing)
 - Geometry modification during depletion
 - Refueling module
 - Possibility to develop a tool for uncertainties propagation

MCNP
- **International reference**
- Code largely benchmarked
- Many applications at TechnicAtome
- Assessment of JHR neutronic performances

Serpent
- **Fast**
- New methods (perturbation, coupled physics…)
- Automatic mesh
- Undergoing V&V process
1) XS generation
 - Standard FA
 - Supercritical pattern for Absorber FA

2) Core calculation
 - 2D model (exact)
 - 3D model

Validation: fuel pattern and core
Contents

1. Depletion calculation methods
2. Codes used in this study
3. Case study: Dummy core
4. Results and Analysis
5. Conclusion and Outlooks
Case study: Dummy core (1/2)

AIMS
- Comparing methodologies / non-regression tests
- Education and Training object
- Validation and qualification of both calculation and computational techniques
- V&V purposes

DESIGN
- Only describe two assembly types
- Simple to model
- Fuel lattice pattern
- Add components
 - Reflector vessel (heavy water...)
 - Experimental devices
- Add ex-core environment

Standard Fuel Assembly (SFA)

Absorber Fuel Assembly (AFA)

Depending on the case study

<table>
<thead>
<tr>
<th>Material</th>
<th>SFA</th>
<th>AFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (MTR type)</td>
<td>8 cm x 0.8 cm</td>
<td>8 cm x 0.3 cm</td>
</tr>
<tr>
<td>Cladding</td>
<td>0.2 cm</td>
<td>0.2 cm</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.2 cm</td>
<td>0.2 cm</td>
</tr>
<tr>
<td>Boron</td>
<td>0.356 cm</td>
<td>0.3055 cm</td>
</tr>
<tr>
<td>Water</td>
<td>8.288 cm</td>
<td>7.6 cm</td>
</tr>
<tr>
<td>Hafnium</td>
<td>9 cm</td>
<td>9 cm</td>
</tr>
<tr>
<td>[1/2]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel (MTR type) Cladding Aluminum Boron Water Hafnium
Case study: Dummy core (2/2)

Fuel assembly lattice configuration (2D)

- 3 configurations
 - Temperature: 300°C
 - Total: 62 depleted medium

Full core configuration (2D)

- 32 assemblies core
 - 16 SFA / 16 AFA
 - Reflector / coolant: light water
 - Fuel lattice: 10 cm
 - Total: 672 depleted medium

For more information

Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations

S. Nicolas, A. Noguès, L. Manifacier, L. Chabert
Results and analysis: **Standard FA (1/3)**

- **Benchmark considerations**

 - The same consistent parameters are taken into account for each code and simulation

 - Reflecting surface are defined as boundary conditions
 - **50 burnup steps** with a maximum value of **100 GWd/tU**
 - Assembly power of: **1.5625 MW_{th}**
 - **Depletion** in fuel and boron plates
 - Temperature: **300 K**
 - **JEFF-3.1.1** nuclear data library
Results and analysis: **Standard FA (2/3)**

- **Standard FA: multiplication factor comparison**

 - **k_{inf} comparison**

 ![Graph showing k_{inf} comparison](image)

 - **Reactivity comparison (mean value of the three MC codes as reference)**

 ![Graph showing reactivity comparison](image)

- **Initial k_{inf}**
 - Monte Carlo codes are all the same within the 1σ range / **+150 pcm** bias for COCONEUT

- **Depletion:**
 - Maximum reactivity peak at ~64 GWd/tU (less than **10%** of $[^{10}B]$ remains)
 - **COCONEUT**: Maximum reactivity discrepancy is found when ^{10}B is half consumed (**+280 pcm**)
 - Bias **relatively constant** between **MCNP and Serpent** even after **60 GWd/tU**
 - Discrepancies become visible after 60 GWd/tU between TRIPOLI4® and other MC codes
Results and analysis: **Standard FA (3/3)**

- **Whole concentrations comparison: MCNP as reference**

 - $[^{135}\text{Xe}]:$ Less than 2.5 % (all codes)
 - $[^{10}\text{B}]:$ at 60GWD/tU (10% ^{10}B remains)
 - MC codes: until 5.0 %
 - COCONUE: until 5.5 %
 - $[^{235}\text{U}]:$ at the end of depletion
 - Serpent: 0.5 %
 - TRIPOLI4®: 1.0 %
 - COCONUE: 1.5 %

 Good agreement between the codes
Results and analysis: 2D full core (1/3)

- **Benchmark considerations**
 - The same consistent parameters are taken into account for each code and simulation
 - Reflecting surface on Z axis
 - 50 burnup steps with a maximum value of 80 GWd/tU
 - Core power of: 50 MW_{th}
 - Temperature: 300 K
 - JEFF-3.1.1 nuclear data library
Results and analysis: 2D full core (2/3)

- **Core calculation:** multiplication factor comparison

 ![Comparison of multiplication factor (K_{inf})](image)

- **MC codes**
 - Discrepancy between -110 pcm and +78 pcm
 - Simulation time: Serpent faster than TRIPOLI4®

- **COCONEUT vs mean of MC codes**
 - Fresh fuel: -235 pcm
 - Constant bias during the depletion: (between -395 pcm and -235 pcm)
 - 6 factor formula has to be calculated during the depletion to determine compensations

- **Reactivity comparison (mean value of MC codes as reference)**

 ![Comparison of reactivity (Δρ)](image)

 Slight discrepancy between the codes.

 Next step:
 3D core calculation and critical configurations research during the depletion.
Results and analysis: 2D full core (3/3)

Whole concentrations comparison

- 135Xe discrepancies
 - MC codes: less 0.6 %
 - COCONUT vs MC: Maximum of 1.6 %

- 149Sm
 - MC codes: less 0.5 %
 - COCONUT vs MC: 4.0 % during the first steps

- 10B
 - MC codes: Maximum of 2.5 %
 - COCONUT vs MC: Close to 4.5 %

Good agreement between the codes
Contents

① Depletion calculation methods

② Codes used in this study

③ Case study: Dummy core

④ Results and Analysis

⑤ Conclusion and Outlooks
Conclusions

- **Good agreements** between MC codes for 2D assembly and 2D full core
 - Serpent faster than other MC codes
 - Quantify the differences between normalization methods

- **Small discrepancy** between COCONEUT and MC codes
 - Constant bias around -300 pcm during the entire depletion for 2D full core

- Dummy core is well suitable for core calculation studies and gives a better understanding of design purpose
Outlooks

- **Optimize MC coupled depletion codes**
 - Adapt time mesh with the flux gradient
 - Test of refueling algorithm proposed by Serpent and TRIPOLI4®
 - Changing depletion mesh step by step during the depletion (3D calculation)
 - Perform uncertainties propagation (compositions / flux)
 - Comparison with experimental core data

- **COCONEUT**
 - Estimate compensations with 6 factors formula
 - 281 groups calculation
 - Perform self shielding during the depletion

- **Dummy core**: future works on new methods for neutron propagation from core to ex-core system
Depletion calculation codes and benchmark considerations (1/2)

- **Neutronic analysis:**
 - Rise to equilibrium / Material balance
 - Flux / power distribution, Absorbers worth

- **Mainly used for export fuel assembly burnup compositions to MC codes**

- **Principal model consideration**
 1) **XS calculation**
 - XS collapsing: MOC calculation 281 → 26 groups
 - Self-shielding performed at the initial step
 - AFA is treated as a supercritical pattern representative of neutronic spectrum in the AFA.
 2) **Core calculation**
 - Transport theory (26-group) - 2D exact → APOLLO2
 - Diffusion theory (4-group) - 3D model → CRONOS2

- **Currently undergoing a large V&V process**
 - Part of this process: estimate the impact of main assumptions on depleted composition with MC codes
Results and analysis: Standard FA (3/4)

- COCONEUT: discrepancy analysis

Relative concentration comparison (%) between COCONEUT and mean value of MC codes

<table>
<thead>
<tr>
<th>Burnup (Gd/tU)</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ[^235]U</td>
<td>-0.12</td>
<td>-0.27</td>
<td>-0.46</td>
<td>-0.69</td>
<td>-1.03</td>
</tr>
<tr>
<td>Δ[^239]Pu</td>
<td>2.42</td>
<td>1.89</td>
<td>1.33</td>
<td>0.82</td>
<td>0.21</td>
</tr>
<tr>
<td>Δ[^148]Nd</td>
<td>1.95</td>
<td>2.07</td>
<td>2.12</td>
<td>2.14</td>
<td>2.15</td>
</tr>
<tr>
<td>Δ[^149]Sm</td>
<td>1.36</td>
<td>1.13</td>
<td>1.59</td>
<td>2.03</td>
<td>2.48</td>
</tr>
</tbody>
</table>

- Main concentrations
 - Less than 3% discrepancy
 - Constant bias on ^148Nd (burnup indicator)

- [^10B]
 - Burned faster with TRIPOLI4® and COCONEUT depletion chain / power normalization?

- COCONEUT Outlook
 - Depletion with 281 group
 - Self shielding during depletion (several steps)