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Introduction
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N The detailed understanding of Critical Heat Flux (CHF) for vertical
rectangular channels is essential for core thermal-hydraulic design and
safety analysis of research reactors using plate-type fuel.

N In research reactors which are cooled by downward core flow, the core flow
reversal should take into account for dasign and safety 

0 At JAERI, reduced enrichment work for JRR-4 is now in progress. JRR-4 is
a swimming pool type research reactor with the maximum power of 35
MWt. Because of comparatively small thermal power, it is not nessesary to
credit auxiliary or emergency pumps for the decay heat removal after coast-
down of main pumps in case of emergency. Therefore, the core flow reversal
would occur just after coast-down of maim pumps.

M High power research reactors have auxiliary or emergency pumps for the
decay heat removal after coast-down of main pumps in case of operational
transients or accident condition such as "loss of commercial electric power
supply". So that the core flow reversal could occur under decay heat level low
enogh and safety margin against CHF is large enough.



Objective of this study
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0 For the low mass flux region including stagnant flow condition,
CHF is closely related to Counter-Current Flow Limitation (CCFL).
The CHF correlation in this region used so far at JAERI is very
conservative one, that is,

00 >> The effects of channel inlet subcooling and axial heat flux
distribution on CHF in this region have not been taken into
account.

M Therefore, the effects of channel inlet subcooling and axial heat flux
distribution on CHF were investigated in this study based on the
existing CHF experimental data under low mass flux region.

0 The CHF at high subcooling and high mass flux were also
investigated to the experimental data at flow excursion (FE) as well
as CHF.



Previous CHF Correlation Scheme Proposed for
Research Reactors using Plate-Type Fuel

IGORR-IV No 111M
5000

+ AVaD ,
0.611 IG*j

10.611 1 500 qC7ff,-,4 0.005 CI (4!)
qcH,,- 0.005 IG* A&B'O (4) 1.3s A

1+2V_
J A

A& H

Al Low mass flux Medium mass flux High mass flux
0.611 ..................... .... ..... ..... .q H .,, 0 .0 0 5 G * .. . .. ......... .................... . .. ... .. .............. . . ............................... . ............ ..... ... .

f0'. ... ase of.. . . . ..................... ... p o o r . . ... . . .. ......
g ATSUBO

4
q* A T�UB G* (2) ..... .. .......CHF, 2 Jn.

A .... ..................... .. .. ... ... . ...... . .. ...... ... ................
. . ....... ...

A ... q4
=0.7 3) IOVCHII-13 2AH 1/4 16 d"

OP, Pe)

G2 G3 G I
I G*1



Experimental conditions of existing CHF tests
investigated in this study
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N Coolant Water

N Pressure Atmospheric pressure

N Mass flux: 0 to 73 kg/mlsee (Downward)

(0: stagnant flow conditions)

0 Inlet subcooling 0 to 78 K

0 De: 4.3 to 91 (mm)

N L/De: 71 to 174 (-)

N Axial heat flux distribution:Non-uniform and Uniform

0 Axial peaking factor: 1.0 to 16

0 Total number of data 69



Axial heat flux distribution of existing CHF tests0
investigated in this study
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Axial heat flux distribution investigated in t his study
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Comparison between all JAERI experimental results
and previous CHF correlation under CCFL condition

for rectangular channels
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CHF expeiiinental iestilts foi- both nonuniform and unifoilm heat flux condition
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Comparison between experimental results and previous
CHF correlation under CCFL condition

for rectangular channels, A TsUB in>30
(Except the data obtained saturated or near saturated condition at the inlet oVehannel)
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CRF expeiiniental esults foi- both nowunifoi-rn and nnifonm heat flux condition
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New CHF correlation under CCFL condition
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0 Based on the investigation results of this study, following correlation
is proposed as a preliminary CHF correlation under CCFL
condition to take into account the channel inlet subcooling effects to
CHF.

-0.7 A C/A I + AV in (5)
qJW-,3]CW A 1/4 2 SUB,
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Comparison between all JAERI experimental results and
New CHF correlation under CCFL condition for

rectangular channels
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Effect of axial heat flux distribution to CHF
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Effects of Axial Peaking Factor on CHF, Gap=2.25mm, L=750mm
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Experimental conditions of Flow Excursion (FE) and
CHF test performed at ORNL

High mass flux region
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M Coolant: Water

M Inlet coolant temperature: 45 IC

M Exit coolant pressure: 17 MPa

0 Nominal average heat flux range: 6--14 MW/m'

0 Corresponding velocity range: 8--21 m/s

0 Channel configuration Rectangular channel,

1.27 x 12.7 x 507 mm



Comparison between measured FE heat flux, CHF obtained
at ORNL and CHF predicted by Eq.(4)
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20 TSD Test Section Design
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New CHF Correlation Scheme Proposed for
Research Reactors using Plate-Type Fuel
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Region boundaries are identified by
the following equations.
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Factors effective to CHF in each region
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Region Effective factors to CHF q*CHF Note

Region I A TSUBo and G* Eq.(4) High mass flux,

Upflow and Downflow

Region 11 G* Eq.(l) Medium mass flux,

Upflow

Region 11' A TUBi,,, G* and AIAH Eq.(2) Medium mass flux,

Downflow

Region III A/AH'Wand A T*SUBin Eq.(5) Low mass flux,

Upflow and Downflow



Conclusions
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N The effects of channel inlet subcooling and axial heat flux
distribution on CHF under CCFL condition were investigated in
this study.

0 As the results, Eq.(5) was proposed as a new CHF correlation
including the effect of channel inlet subcooling.

N Based on the comparison between Eq.(5) and CHF experimental
data obtained non-uniform heat flux condition, this new correlation
can be adopted within the range investigated in this study.

(Axial peaking factor 1.0 - 16)

N For high mass flux region, Eq.(4) was compared with FE and CHF
experimental data obtained at ORNL. Eq(4) can be used to identify
the thermal limit of research reactors for the condition investigated
in this study.

0 A new CF correlation scheme was proposed based on this study.



Comparison between experimental results and
New CHF correlation under CCFL condition

for rectangular channels A Ts >30UB in
(Except the data obtained saturated or near saturated condition at the inlet oVehannel)
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LOOE-01
0 ATsvbJn=30-680CU Gap=2.25nunL-75(hnni

z Z -- o ATsubin=57-59TU Gap=2.8nuuL=375iiun
Z 7

0 ATsub, in =41-58 C U Gap=5.0nun, L=750aun

a ABub, in =36-77 C NAJ Case I

X ABub in 36-78 T N/IJ Case 2 Gap=2.25inm,
33y4' + ATsub, in =70-74 NIU Case 3 L=750nim

W +33 U)
1.00&02 -33%

Z-
U : Unifonn licat flux
N/U: Noii-tufform lical flux

DNB data obla�ied tider stagnant
A flow ro flow) condbon

A �,W/x
0.7 (P8 / P�)1/4 1 +

LoOE-03 All +

I.OOOE-03 LOOOE-02 LOOOE-01

q* CIIF,3 NETV (CaICUlate(l CHO 6)



Comparison between measured FE heat flux (CHF at
ORNL and CHF predicted by Gambill Weatherhead
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TSD Test Section Design
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