

This Presentation Will Highlight

- o Overview of JAERI-ORNL collaborative work and how it fits in with ANS Severe Accident Program Plan for FCI issue closure
- o NSRR tests (with ANS miniplates) during 1993-94 & beyond
- o Modeling and analysis framework for:
 - Thermal-hydraulic response
 - Material breakup and dispersion
- o Key results of analyses and experiments

Full Papers to be presented at:

1) 1995 Natl. Heat Transfer Conference, Portland, Oregon, USA 2) Nuclear Reactor Thermal-Hydraulics Conf., NURETH-7, NY, USA

Fig. 2.4 NSRR irradiation capsule type VII prepared for the test of silicide plate-type fuel in experiment 508 series

Fig. 2.5 Transient reactor power and core energy release attained in pulsing operation NSRR with \$4.67 reactivity insertion

JAERI-ORNL TESTS IN NSRR

o A FEW (KEY) QUESTIONS CONCERNING ISSUE CLOSURE

- What is the likely mechanical behavior of plates during rapid heatup?
- What is the impact of fuel homogeneity on damage thresholds ?
- What are the kinetics of U₃Si₂-Al and Al-H₂O ignition during rapid heatup?
 What are the triggerability and onset requirements for material dispersion ?
 What are the energetics of a resulting (if any) energetic FCI "for ANS fuel" ?
- ****- How does fuel burnup affect the above outcomes ? ****
- **o NSRR TESTING & MODELING WORK CAN PROVIDE VALUABLE INFORMATION** (esp. for closure of FCI-related issues)
 - Plate cracking, bowing and steam explosion onset thresholds
 - Impacts of fuel homogeneity and preirradiation on damage thresholds
 - Degree and onset of aluminum ignition can be quantified
 - Degree of "transient" onset and degree of U₃Si₂-Al exothermic reactions
 - Realistic thermal-to-mechanical energy conversion estimates
 - ** This information is obtained with nuclear heating, but, in the absence of external triggers and propagation - aspects to be looked at via out-of-pile testing and appropriate modeling **

Test Summary 1993–1994

Test #	Configuration	Fuel Homogeneity	NSRR Core Energy Release (M.J)	Max. Cladding Surface Temp. (°C)	Post-test Fuel Plate
518-1	Single	Inadequate	27.0	410	Mechanical failure
518-2			40.3	700	Clad melting
518-3		Improved	27.6	N/A	No failure
518-4			21.3	210	No failure
518-5			42.7	600	
518-6	with two dummy plates		27.3	320	
518-7			43.1	610	

OVERVIEW OF MODELING FRAMEWORK

o HEAT TRANSFER (--> Material response, dispersion and ignition)

- 3-D HEATING model developed (heatup, melting and freezing)
- Impact of thermocouples quantified
- Surface boiling heat transfer correlations for transient heatup
- Estimates of voiding and heat transfer in enclosed geometries
- o MATERIAL BREAKUP / DISPERSION (--> explosive loads estimation)
 - Multidimensional CTH, PCTH and LS-DYNA3D models of fuel plate
 - 1-D modeling of important effects (strain induced due to thermal expansion, melting, vaporization and void / fission gas expansion)
- o NEUTRONICS (--> Integral thermal energy generated in miniplates)
 - 2-D model of NSRR, with 3-D model of miniplates using MCNP
 - 1-D deterministic neutronic calculations with XSDRNPM (cross-checking)
 *** Future efforts will investigate transient energy deposition profiles, and impact of pre-existing fission products ***

Fig.4 Dependence of bubble pattern on the period in saturated pool boiling.

Fig.3 DNB heat flux vs. period.

377

~

RESULTS OBTAINED FOR TEST #518-1

t [s]

RESULTS FOR CASE 518-4

381

t [s]

Experimental data base

• TREAT EXPERIMENTS

x SL-1 fuel plate tests (mass composition: 81% AI; 17% U; 2% Ni)

- U-Al alloy fuel; no clad; Dimensions: 5mm x 12.7 mm x 12.7 mm cutouts

x HFIR fuel plate tests (mass composition: 59% AI; 41% U₃O₈)

- Cermet (U₃O₈) fuel; Dimensions: 25.4 mm x 12.7 mm x 1.27 mm cutouts

• NSRR EXPERIMENTS

x JMTR fuel plate tests (mass composition: 23.3% AI; 76.7% U₃Si₂ --> 4.8 g/cc)

- Cermet (U₃Si₂) fuel; Dimensions: 125 mm x 75 mm x 1.27 mm picture frame

x ANS fuel plate tests (mass composition: 63% AI; 37% U₃Si₂ ---> 1.4 g/cc)

- Cermet (U₃Si₂) fuel; Dimensions: 125 mm x 75 mm x 1.27 mm picture frame

Experimental data base (cont)

TREAT Facility

Pulse width

0.3 - 1 sec

JAERI Facility 0.015 - 0.08 sec

- TREAT Experiments
 - Longer heat up time allows energy to spread Uniform temperature distribution
 - More energy leaves the plate Able to deposit more energy
- JAERI Experiments

Shorter exposure time

Steeper temperature gradients

• JAERI experiments show that rate of energy deposition affects fuel performance

Dispersion model (cont) Mechanism for accelerating the fuel plate <u>Dispersion</u> - break up of fuel into small particles by acceleration induced hydrodynamic breakup

- Thermal expansion of the solid
- Expansion of material while changing phase from solid to liquid
- 385
- Thermal expansion of material while in liquid phase.
- Expansion of material while changing phase from liquid to vapor
- Expansion of gases trapped in the plate (f.p., gas occupying voids)

Dispersion model

- Thermally driven expansion process
- Transient temperature change rate and phase change rate affects the expansion process
- Finite difference heat transfer model with melting and vaporization was coupled with thermally induced expansion models

$$\overset{\omega}{\approx} \quad k\frac{d^2T}{dx^2} + q''' = \rho c_p \frac{dT}{dt} \qquad T \neq T_m \& T \neq T_v \qquad k\frac{d^2T}{dx^2} + q''' = \rho h_{sf} \frac{dx_{sf}}{dt} \qquad T = T_m$$

$$k\frac{d^2T}{dx^2} + q''' = \rho h_{fg} \frac{dx_{fg}}{dt} \qquad T = T_v$$

• Strain rate is defined as the following:

$$SR = (1-f)(\alpha_s \frac{dT}{dt} + \frac{\rho_1 - \rho_s}{\rho_s} \frac{dx_{s-1}}{dt} + \alpha_L \frac{dT}{dt} + \frac{\rho_v - \rho_1}{\rho_v} \frac{dx_{1-v}}{dt}) + f \frac{1}{T} \frac{dT}{dt}$$

Dispersion model: sources of energy

- Heating caused by nuclear fissioning process
 Follows the shape of thermal neutron flux incident on the fuel plate.
 0.5 4.5 MJ/kg of fuel plate
 25 400 MW/kg of fuel plate
- Exothermal reaction between U3Si2 and aluminum.
 0.3 0.35 MJ/kg of U3Si2 depending on fuel volume fraction
 0 100 MW/kg depending on the temperature
- At aluminum melting temperature the reaction is slow. At U3Si2 melting temperature the reaction in fast.
 - Chemical oxidation reaction between metal and water 18 MJ / kg of aluminum (0.18 MW/kg - 180 MW/kg)
 - Significant oxidation was reported for tests where surface temperature exceeded melting temperature of the oxide layer
 - Two mechanisms of aluminum oxidation reaction are : Vapor phase burning (vapor Al reacting with steam) Diffusion of steam though the liquid/solid oxide layer

Dispersion model results (cont)

Dispersion model results (cont)

Energy /mass (J/g)

