Instrumented fuel plate for IRIS irradiation program

CEA Saclay (France) E-mail : patricia.boulcourt@cea.fr

IGORR 10 meeting – Gaithersburg (MD), USA – September 12-16, 2005

1

- Context (fuel qualification)
- IRIS device and its associated equipments
- The « Instrumented IRIS device »
- Tests performed in April 2004
- Results

- CEA engaged in fuel qualification for research reactors → tool: IRIS device
- Initially, IRIS devices have been designed for heat flux greater than 275 W/cm² → limited to 231 W/cm²
- For higher heat flux, the french regulator required that CEA completes the qualification of thermal hydraulic computer codes for steady states and transients

IRIS device

Material : AG3NET

Dimensions :

- section 82,2 x 82,4 mm (as a standard fuel element in OSIRIS)
- total height : 950 mm

Content :

- 4 full-sized fuel plates
- 4 crimped aluminum plates

Dimensions of the fuel plates :

641.9 x 73.3 x 1.27 mm

Maximum dimensions of the fuel zone :

609.5 x 65.4 x 0.7 mm

Instrumented IRIS device

Ce Thermocouples location in the plates

Safety authority request

 To complete the qualification of thermal hydraulic computer codes for steady states and transients

$$P_{\max}^{before_transient} = \min\left[P_{231W/cm2}^{reactor}, P(T_{transient}^{s \tan dard.elt} \le T_{70MW}^{s \tan dard.elt})\right]$$

- <u>One condition</u> :
 - ➤ Check during steady states that T_{calculated} ≈ T_{measured} otherwise, stop the experiment before the transient
 - ➢ One TC among TC 2 and 3 and one among TC 1,4,5

Procedure of the tests 2 days (52nd an 17th location in OSIRIS)

- Before experiment : calculation of cladding temperatures
- Increase of the power by steps of 10 MW,
- Thermal balance at 40 and 63 MW
- Comparison with calculated temperatures
- Stop of the 3 primary pumps
 - Drop of control rods
 - Opening of natural convection valves
- All along the experiment, recording of thermal hydraulic parameters (Q, T, P every second during steady states and every 0,1 s during the transient)

Measured and calculated temperatures during the steady state phase

TC n°, Reactor power (MW)						
Tm+∆T	Tc (P+10 %, Q-8%)					
Tm	Tc (FLICA b.e.)					

Results in the 52nd location of the core :

TC2, 40 MW		TC2, 63 MW		TC1, 40 MW		TC1, 6	63 MW	
63,1	64,2		83,6	86,8	53,5	56,3	69,6	75,2
61,9	59,7		82,4	80,1	52,3	52,7	68,4	69,9

Results in the 17th location of the core :

TC2, 40 MW		TC2, 63 MW		TC1, 40 MW		TC1, 63 MW	
46,4	47,7	60,4	62,6	42	43,6	53,8	56,3
45,2	45,4	59,2	59	40,8	41,8	52,6	53,6

Measurement results in location 52

First calculation results with SIRENE-FLICA code

• <u>for t < 54 s</u> :

The law of flow decrease has been deduced from the difference of pressure measured during the transient phase in the reactor core

• <u>for t > 54 s</u> :

The flow law has been evaluated such as the calculated temperatures in the instrumented plate fit exactly to the measured ones.

Results after flow adaptation

Conclusions

- First calculation :
 - very good agreement during steady states
 - Itransient : increase of temperature occurred too early but maximum value very close to reality (≠ 3°C)
- After adaptation of the flow law, good agreement during all phases and conservative temperatures
- This experiment contributes to the qualification of thermal hydraulic computer codes but also validates neutronic calculations which are made in amount
 - Whatever the location of the IRIS device in the core, good knowledge of the irradiation conditions (P, T, B-up)
- Specific authorization for an experiment a little greater than 300 W/cm² obtained

Thermocouples setting

 each TC has different diameters according to its location in the plate

		-
Ø = 0.2 mm	Ø = 0.34 mm	Ø = 1 mm
(13 or 38 mm)	(82 to 592 mm)	(15 m)

Law of flow decrease

• for t < 54 s :

$$\Delta P_{frottement} = C_f \cdot \frac{Q^2}{2\rho \cdot D_h \cdot S^2} \quad \text{with} \quad C_f = 0.2 \left(\frac{Q \cdot D_h}{S \cdot \mu}\right)^{-0.2} \text{ in planed chann}$$

n planed channel for Re > 5000

• <u>for t > 54 s</u> :

t(s)	% Q _{nom.init}
54	10
70	7
90	3
120	1
>170	1.2

Instrumented IRIS plate in 52

Data	Initial sta the l tra tra	value bilised at beginning of the ansient • 0s	Evolution be th 3s <	fore opening of e clapets t < 54s	Maximal value after opening of the clapets t > 54s		
	Mes.	Calcul.	Mes.	Calcul.	Mes.	Calcul.	
TCC-01 TCC-02 TCC-04 rec TCC-05	70 °C 85 °C 83 °C 63 °C	74 °C 84 °C 82 °C 64 °C	$\begin{array}{c} 41 \rightarrow 41 \ ^{\circ}\text{C} \\ 43 \rightarrow 43 \ ^{\circ}\text{C} \\ 43 \rightarrow 43 \ ^{\circ}\text{C} \\ 40 \rightarrow 42 \ ^{\circ}\text{C} \end{array}$	$\begin{array}{c} 43 \rightarrow 46 \ ^{\circ}\text{C} \\ 45 \rightarrow 48 \ ^{\circ}\text{C} \\ 45 \rightarrow 47 \ ^{\circ}\text{C} \\ 41 \rightarrow 41 \ ^{\circ}\text{C} \end{array}$	73 °C à t = 122 s 74 °C à t = 120 s 74 °C à t = 122 s 48 °C à t = 117 s	83 °C à t = 123 s 79 °C à t = 123 s	
TCA-01 TCA-03 TCA-05	40 °C 43 °C 38 °C 39 °C 38 °C 37 °C		$\begin{array}{c} 38 \rightarrow 37 \ ^{\circ}\text{C} \\ 38 \rightarrow 37 \ ^{\circ}\text{C} \\ 37 \rightarrow 36 \ ^{\circ}\text{C} \end{array}$	$\begin{array}{c} 38 \rightarrow 36 \ ^\circ \mathrm{C} \\ 37 \rightarrow 35 \ ^\circ \mathrm{C} \\ 37 \rightarrow 34 \ ^\circ \mathrm{C} \end{array}$	49 °C à t = 125 s 44 °C à t = 121 s 38 °C à t = 120 s	99 °C a t = 129 s 39 °C à t = 124 s absent	

Instrumented IRIS plate in 17

Data	Initia st be tr t =	I value abilised at the eginning of the ansient = 0s	Evolution befo the 3s < t	ore opening of clapets < 54s	Maximal value after opening of the clapets t > 54s		
	Mes. Calcul.		Mes.	Calcul.	Mes.	Calcul.	
TCC-01 TCC-02 TCC-04 rec TCC-05	54 °C 61 °C 60 °C 50 °C	56 °C 62 °C 63 °C 51 °C	$\begin{array}{c} 39 \rightarrow 38 \ ^{\circ}\text{C} \\ 41 \rightarrow 40 \ ^{\circ}\text{C} \\ 41 \rightarrow 40 \ ^{\circ}\text{C} \\ 38 \rightarrow 39 \ ^{\circ}\text{C} \end{array}$	$\begin{array}{c} 41 \rightarrow 42 \ ^{\circ}\text{C} \\ 42 \rightarrow 43 \ ^{\circ}\text{C} \\ 42 \rightarrow 43 \ ^{\circ}\text{C} \\ 42 \rightarrow 43 \ ^{\circ}\text{C} \\ 40 \rightarrow 39 \ ^{\circ}\text{C} \end{array}$	s 58 °C à t = 124 s 59 °C à t = 127 s 43 °C à t = 120	57 °C à t = 121 s 60 °C à t = 121 s 59 °C à t = 121 s 47 °C à t = 121 s	
TCA-01 TCA-03 TCA-05	39 °C 38 °C 37 °C	40 °C 39 °C 38 °C	$37 \rightarrow 36 \ ^\circ C$ $37 \rightarrow 36 \ ^\circ C$ $37 \rightarrow 36 \ ^\circ C$ $37 \rightarrow 36 \ ^\circ C$	$\begin{array}{c} 38 \rightarrow 37 \ ^{\circ}\text{C} \\ 38 \rightarrow 37 \ ^{\circ}\text{C} \\ 37 \rightarrow 36 \ ^{\circ}\text{C} \end{array}$	44 °C à t ^S 130 s 40 °C à t = 124 s 36 °C à t = 120 s	43 °C à t = 121 s 39 °C à t = 121 s 37 °C à t = 121 s	

Gamma spectrometry

- <u>3 goals :</u>
 - to obtain spatial distribution of counting rate of the main fission products :
 - ¹⁴⁰Ba-La, ¹⁰³Ru, ⁹⁵Zr (representative of the power)
 - ¹³⁷Cs (representative of the burn-up)
 - ➤ to quantify the average fission product activities, in the maximum power area → calculated activities of the main fission products are compared to measured ones (M/C ratio)

 \succ to evaluate the burn up of the fuel

<u>Results (IRIS 1 and 2) :</u>
▶ 0.9 < M/C < 1.1

