

Development of Time-Of-Flight Neutron Depth Profiling at Penn State University -Preliminary Results

Sacit M. Çetiner Kenan Ünlü Penn State University Radiation Science & Engineering Center University Park, PA 16802-2304

> Gregory R. Downing NIST

TRTR-IGORR 2005 Gaithersburg, MD September 12-16, 2005

INTRODUCTION

- Neutron depth profiling (NDP)
- Conventional NDP
 - limitations
- Penn State NDP Setup
- Time-of-Flight NDP (TOF-NDP)
 - need
 - possibilities
- Penn State TOF-NDP Setup
- Preliminary Results

September 12-16, 2005

NEUTRON DEPTH PROFILING

- Neutron depth profiling
 - powerful surface characterization technique for certain light elements
 - monoenergetic, isotropic charged particle emission
 - rapid energy loss
 - nondestructive
- Conventional neutron depth profiling (NDP)
 - direct measurement of residual energy
 - SBD, PIPS or Photodiode PIN detectors
- Time-of-Flight NDP
 - particle flight time is measured
 - microchannel plates (MCP) can be used

September 12-16, 2005

APPLICATIONS OF NDP

- B depth profile in insulation layers such as borophoshosilicate glass (BPSG), and implanted B distributions of semiconductor wafers
- He dynamics in technologically important materials
- Li depth profile in lithium niobate (LiNbO₃) optical waveguide
- He damage and effusion in fully stabilized zirconia
- Li and N profiles in lithium phosphorus oxynitride (LiPON), and Li profile in lithium cobaltoxide (LiCoO₂), two important lithium-ion battery materials

September 12-16, 2005

NEUTRON DEPTH PROFILING

$^{10}B+n - 3Li + ^{4}Ha 476keV; ^{7}Li - 3La 84keV + x47keV$

$^{10}B+n - 4 0 k + 4 H = 776 k e$

September 12-16, 2005

PENN STATE NDP SETUP

September 12-16, 2005

BPSG STANDARD SAMPLE

September 12-16, 2005

BPSG STANDARD SAMPLE

September 12-16, 2005

TIME-OF-FLIGHT NDP

- Particle flight time is measured, which is inversely proportional to particle residual energy
- Instead of semiconductor detectors, microchannel plates (MCP) can be used for precise time signals
- Secondary electrons ejected from the surface of the sample as the charged particle emerges are used to trigger the start signal; alpha or recoil give the stop signal

PENN STATE TOF-NDP SETUP

September 12-16, 2005

TRTR-IGORR 2005

Net.

TIME-OF-FLIGHT NDP

 Time-of-NDP is particularly important for depth profile measurements of shallow and ultra shallow source/drain junctions

 device thickness <200 nm

TIME-OF-FLIGHT NDP: Preliminary Measurements - Offline

September 12-16, 2005

TIME-OF-FLIGHT NDP: Preliminary Measurements - Offline

September 12-16, 2005

TIME-OF-FLIGHT NDP: Preliminary Measurements - Offline

September 12-16, 2005

CONVENTIONAL NDP: Same Sample

September 12-16, 2005

HOW TO IMPROVE

- Noise elimination
- Impedance matching along the entire signal transmission line
- Microchannel plate (MCP) assembly: special conical anode

September 12-16, 2005

MCP SIGNAL

September 12-16, 2005

Signal Improvement: Special Conical Anode

September 12-16, 2005

SUMMARY

- Preliminary measurement results have been presented
- Further optimization is needed for higher signal resolution
- Improved depth resolution will make it possible to measure B depth profiles in ultra shallow junctions

September 12-16, 2005

THANK YOU!

Penn State Breazeale Nuclear Reactor during a pulse

CONVENTIONAL NDP: Same Sample

September 12-16, 2005

TIME-OF-FLIGHT NDP

September 12-16, 2005

TIME-OF-FLIGHT NDP

September 12-16, 2005