

First Operational Experience with the Research Reactor FRM-II

H. Gerstenberg, J. Meier, C. Morkel,I. Neuhaus, K. Schreckenbach,TU München, FRM-II

Neutron source FRM-II:

- Research reactor optimized for production of neutrons for basic research and applications
- Concept/construction: Siemens/Framatome FANP und TUM
- Site: Campus of the Technical University Munich, Garching
- Basic characteristics :

≻20 MW thermal power

- >cylindrical compact core, 8 kg uranium (93% enriched),
 - U_3Si_2 -Al

≻52 d cycle per fuel element

>H₂0 coolant of fuel element, D₂0 moderator/reflector

➢maximum thermal neutron flux in the moderator tank (from measurement): 6.5x10¹⁴ n/cm²s

FRM-

Conceptual design of the reactor

IGORR 2005, Gaithersburg

FRM-II

>Inherent safety against H_2O/D_2O leakage

▶2 independent shut down system

- Hf control rod moving in the center of the fuel element
- 5 Hf emergency shut down rods within the moderator tank

Digital reactor control system

≻Heat release via

- primary coolant circuit (4 pumps, 300 l/s, $37^{\circ}C \rightarrow 52^{\circ}C$)
- secondary cooling circuit (releases also the heat from the

moderator tank and the reactor pool)

- 4 cooling towers

Safety Characteristics of FRM-II (II)

>Emergency cooling system

- 3 battery supplied pumps being operated for 3 hours subsequent to rector shut down
- after 3 h cooling by natural convection of pool water

≻Layout against

- earthquake up to power of 6.5
- airplane crash

- Nuclear Start-up March-October 2004:
- Investigations at low power (<200 kW)</p>
- Investigations in 7 steps
 - 200 kW, 2 MW
 - 6MW, 10 MW
 - -14 MW, 18 MW
 - -20 MW
- Burndown of the fuel element to 1040 MWd

Investigations at low Reactor Power (below 0,2 MW)

2. March 2004 to 25. March 2004

- fuel element placed in the central channel with empty moderator tank
- check of undercriticality during D₂O filling of the moderator tank
- first criticality 2. March 2004 14:01
- measurement of neutron flux density
- measurement of efficiency of the control rod and the shut-down rods
- partial gamma-emission tomography of the fuel element under water for determination of the power density distribution.

IGORR 2005, Gaithersburg

- Investigations in 7 power steps up to the nominal power of 20 MW:
- Power calibrations
- Check of the systems at higher reactor power
- Functioning of the in-pile sources
- (in particular cold source when changing reactor power)
- ➤radiological measurements
- Scram tests

5 MW 10 MW Nominal power 20 MW

- May 10, 2004 July 7, 2004 Aug 24, 2004
- 24 h test run at 20 MW Aug. 25, 2004
- continous runs at 20 MW till end of cycle Sept.11 Oct. 20, 2004
 - -> still further 8 days at nominal power possible
- visual inspection of the fuel element under water

FRM-II

Reactor power

Temperature

Position of

control rod

of primary

coolent

Adiabatic heating of the coolant. The primary and secondary water pumps are running, the tenary cooling is stopped in the time period 20 to 60 min. .The reactor power (upper plot) is stabilized at 150 kW by moving the control rod (lower plot). At the time 60 min the teneray cooling is started again. The movement of the control rod shows the negative reactivity coefficient of the primary coolent of about -9pcm/°C.

Initial Instrumentation of the FRM-II

Secondary Sources: Hot source T > 2300 K Liquid D₂-cold source T ≈ 25 K Converter facility cancer therapy High intensity positron source Irradiation devices: 6 channels pneumatic rabbit system 2 channels hydraulic rabbit system irradiation device inside control rod Si doping $\emptyset \leq 200 \text{ mm}$ Radio- and Tomography thermal neutrons fast neutrons

Initial Instrumentation of the FRM-II

PANDA **Spectrometers:** Cold neutron 3-axis spectrometer Thermal neutron 3-axis spectrometer PUMA NRSE-DAS 3-axis neutron resonance spin echo Diffractometer for materials research STRESS-SPEC Structure Powder Diffractometer SPODI Hot neutron, single crystal diffractometer HEIDI TOF-TOF High resolution time of flight spectrometer Backscattering spectrometer BSSM Resonace spin-echo spectrometer RFSFDA Reflectometer RFFSANS MAFF Visions: Fission fragment accelerator Ultra-cold neutron source Fast rabbit system IGORR 2005, Gaithersburg

Summary - Milestones

May 3, 2003	operational license of FRM-II has been granted by the State of Bavaria
July 10, 2003	delivery of the first 2 fuel elements
March 2 – 25, 2004	zero power tests
April 25 – Aug 25, 2004	tests at 7 power stages up to 20 MW, including the start-up of the main experimental installations
Sept. 11 – Oct. 20, 2004	long term continous runs at 20 MW
April 25, 2005	license for routine operation has been granted by the State of Bavaria
April 29 – June 24, 2005	first cycle of routine operation
July 12 – Sept. 8, 2005	second cycle of routine operation

