

Status of the High Flux Isotope Reactor and the Reactor Scientific Upgrades Program

Douglas Selby

March 13, 2007

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

HFIR history (1)

- The US AEC made a recommendation to build a high flux research reactor at ORNL in November of 1958
- HFIR Construction began in June of 1961
- Initial reactor criticality was achieved in August of 1965

HFIR history (2)

- 100th fuel cycle was completed in December of 1973
- In November of 1986 the reactor was shutdown to address a pressure vessel embrittlement issue
- Reactor was restarted in May of 1990 with a lower operating pressure and a 15% reduction in the full power level

HFIR history (3)

- In the late 1980s a proposal was made to replace the HFIR with a new 300 MW Reactor (the Advanced Neutron Source)
- Project was eventually canceled due to cost and issues associated with the use of high enriched fuel and was replaced with the Spallation Neutron Source project

HFIR history (4)

- HFIR scientific upgrades program was initiated in 1998 to increase the neutron scattering science capabilities
- 400th HFIR fuel cycle was completed in May of 2004
- HFIR was shutdown January 2006 for the cold source installation

HFIR includes 4 beam tubes and a number of irradiation and isotope production positions

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures 12/21/2006

New HFIR Look Following Upgrades

Shielding in Beam Room is Complete

- Shield walls in the beam room are approximately 81 cm of high density hematite concrete
- The nearly 30,000 Kg door to the shield tunnel is installed and can be opened or closed by a single person.

HB-4 Guidehall, December 2006

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures 12/21/2006

Guidehall Shield Tunnel, January 2007

The 7 Year Scientific Upgrades Plan is Nearing Completion

- Planned Upgrades at HB-1, 2, and 3 are completed.
- Reactor Startup with operating cold source at HB-4 is scheduled for April of this year.
- HB-4 guides and their shielding have been installed.
- SANS instruments are ready for beam and commissioning with beam should be completed by the end of the summer

Additional upgrades to the HFIR scientific facilities are being proposed

 The success or failure of the new cold source and its associated instruments and beam lines will be a major contributor to our ability to obtain funding for these additional upgrades

Concept of new user facility and entrance way at HFIR

Proposal has been made to DOE to build a second cold source at the HB-2 beam tube and a second Guidehall

- If approved, project might start as early as 2013
- Cold source at HB-2 could support 5 guides and up to 10 instruments

HFIR includes 4 beam tubes and a number of irradiation and isotope production positions

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures 12/21/2006

Concept of future project Of HB-2 guidehall

Lower Ground Floor of HB-2 Neutron Guide Hall

Neutron Sciences

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Performance Measures 12/21/2006

Guide system could provide even more enhancement to the beams

 With five supermirror guides starting 2.5 m from the cold source Neutron flux at the end of the guides the performance of an HB-2 cold source could be significantly better than the HB-4 cold source.

The outlook for the future of HFIR is positive

- Seven thermal instruments presently operating or being commissioned and seven cold instruments on the way.
- Next major outage not necessary until 2021 for beryllium reflector change out
- Pressure vessel good at least until 2040
- Additional site, reactor, and scientific facility upgrades identified as part of a new 10 year plan

