

BR2 Reactor Department, SCK*CEN, Mol, Belgium

MCNPX 2.6.C vs. MCNPX & ORIGEN-S: State of the Art for Reactor Core Management

S.Kalcheva and E.Koonen

RRFM2007, Lyon, France, 11–14 March 2007

Objectives

Comparison of depletion capabilities between MCNPX 2.6.C and MCNP(X)&ORIGEN-S combined method

- Testing of MCNPX 2.6.C on the whole core criticality calculations of complex heterogeneous reactor system
- Validation of MCNPX 2.6.C on reactivity measurements at the rector BR2
- Application of MCNPX 2.6.C for reactor core management

MCNPX 2.6.C depletion methodology

Automatic, internally linked depletion calculations&steady-state flux calculations

- MCNPX: steady state calculations
 - continuous energy reaction rates for (n,γ) , (n,f), (n,2n), (n,3n), (n,alpha) and (n,p) only for the requested materials; k_{eff}
 - ♣ 63 energy group fluxes, used by CINDER90 to determine the rest of the interaction rates, which are not calculated by MCNPX
 - calculates the fission rate for thermal, fast and high energy regions and selects automatically the appropriate fission yield corresponding to the energy range containing the majority of fissions at each time step

CINDER90: 1 – D depletion code

- Uses one group constants from MCNPX to generate new number densities for the requested time step
- Tracks the time-dependent reactions of 3456 isotopes using its own intrinsic 63 energy group cross sections and decay data for daughter transmutation products when the information is not specified by MCNPX
- Offers a thermal, fast and high energy fission yield for each fissile isotope

MCNP(X)&ORIGEN-S depletion methodology

Externally linked depletion & state flux calculations

MCNP(X): steady – state calculations

- continuous energy reaction rates for (n,γ) and (n,f) of main fissile nuclides and (n,γ) of dominant F.P.
- Calculation of 3 D power distribution in the core; k_{eff}

ORIGENS: 1 – D depletion code

- Uses one group constants from MCNP(X) to update the existing cross sections for LWR
- Input is the fission power or neutron flux calculated by MCNP(X) in the spatial cells where the burnup calculations are needed
- Evaluates the evolution of the isotopic fuel densities for the desired number depletion time steps
- The isotopic fuel composition for a given time step is introduced back into the MCNP model and distributed in the core using the detailed 3–D power peaking factors

MCNP(X) calculation of effective thermal microscopic cross sections

Nuclide	ORIGENS	MCNP(X)	Nuclide	ORIGENS	MCNP(X)
²³⁵ U(n,γ)	98	68	103 Rh(n, γ)	150	113
²³⁵ U(n,f)	520	400	105 Rh(n, γ)	1.8E+04	1.2E+04
²³⁸ U(n,γ)	2.73	2	135 Xe(n, γ)	3.6E+06	2.2E+06
²³⁸ U(n,f)	0	8E-06	¹⁴⁷ Pm(n,γ)	235	127
²³⁷ Np(n,γ)	170	153	$^{149}{ m Sm}(n,\gamma)$	4.15E+04	5.5E+04
²³⁷ Np(n,f)	0.019	0.013	150 Sm(n, γ)	102	72
²³⁹ Pu(n,γ)	632	360	151 Sm(n, γ)	1.5E+03	8.3E+03
²³⁹ Pu(n,f)	1520	750	152 Sm(n, γ)	210	150

Comparison of depletion methodologies

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Testing of MCNPX 2.6.C on the Research Reactor BR2

Evolution of macroscopic cross sections by MCNPX 2.6:

Automatic calculations at each time step:

reaction rates

• power distribution

 isotopic fuel densities

burnup

activity

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

STUDIECENTRUM VOOR KERNENERGIE

Testing of MCNPX 2.6.C on the Research Reactor BR2

Comparison of the atomic densities by CINDER90 and ORIGEN-S:

Good agreement for main fissile nuclides and dominant F.P.

Testing of MCNPX 2.6.C on the Research Reactor BR2

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Criticality calculations by MCNPX 2.6 and MCNP&ORIGEN-S

Conclusions – common features

- The capabilities for depletion and criticality reactor core analysis of the new burnup Monte Carlo code MCNPX 2.6.C are compared the MCNPX&ORIGEN-S method
- Both methods use the same Monte Carlo code, which is linked with a 1 – D depletion code: CINDER90 in MCNPX 2.6 and ORIGEN-S in the MCNP(X)&ORIGEN-S method.
- In the both methods the reaction rates are calculated by MCNP(X) and the one – group constants are introduced into the depletion equation.

Conclusions – differences

MCNPX 2.6.C: the whole process is *automatic* and the steady – state flux calculations by MCNPX are *internally linked* with the depletion calculations by CINDER90

- the reaction rates are updated for each time step in the requested fuel region during the irradiation period
- MCNP(X)&ORIGEN-S method: the reaction rates are calculated by MCNP(X) once – at BOC and introduced into ORIGEN-S, which performs the depletion calculations for all desired time steps
 - Then the isotopic fuel composition for a given time step is introduced back into the MCNP geometry model and distributed in the core using the calculated earlier 3 – D power peaking factors

Conclusions – advantages and disadvantagess

MCNPX 2.6.C:

- the number of the spatial fuel zones, which can be depleted is still limited by the allowed computer memory
- Easy for use
- MCNPX&ORIGENS:
 - The number of the fuel depletion zones used in the MCNP&ORIGEN-S method is unlimited (used about 4000 fuel cells)
 - Higher accuracy in criticality calculations vs. MCNPX
 2.6.C