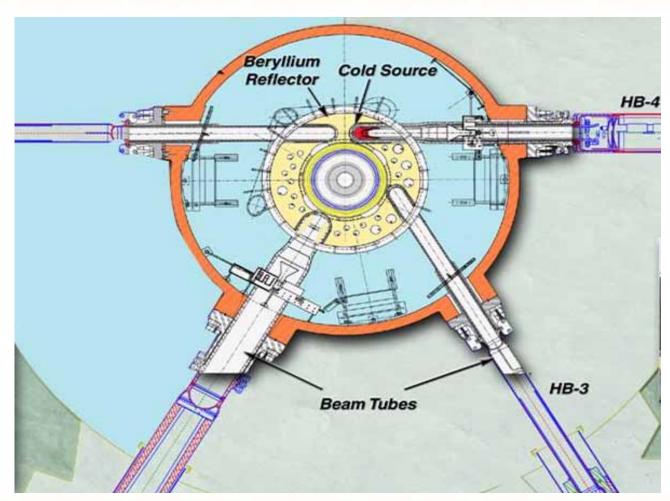


Status of the High Flux Isotope Reactor Cold Source Project

Ken Morgan and Douglas Selby

March 13, 2007

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


The HFIR Cold Source Design Concept is Based on Three Key Decisions

- Hydrogen was chosen as the moderator material
- Forced circulation of hydrogen was chosen as the means to assure cooling of the hydrogen and moderator vessel
- Decision was made to operate in the supercritical gas mode to avoid 2-phase conditions during cool-down, warm-up, and most off-normal transient conditions

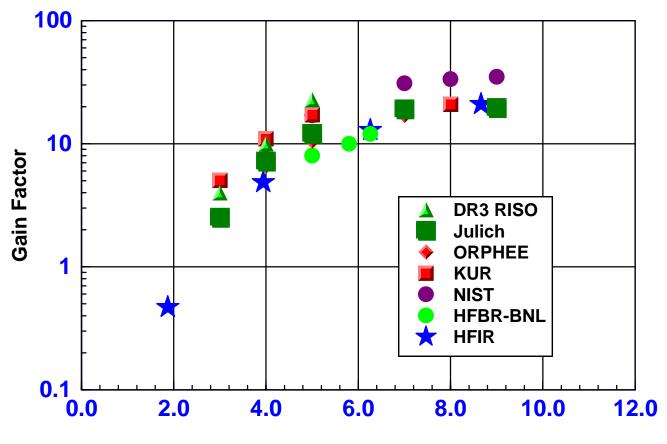
Early Decision Was Made to Install Cold Source In HB-4 Beam Tube

Principle Design Parameters

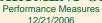
Normal Operating Parameters Valu

Effective Hydrogen Temperature 21 K

Hydrogen Pressure 14 – 15 bar


Nominal Hydrogen Mass Flow Rate 0.072 kg/s

Total Hydrogen Mass in Loop 5.4 Kg


Comparison of Calculated HFIR Cold Source Gain Factors with Measured Gain Factors at Other Hydrogen Cold Source Facilities

Neutron Wavelength (Angstroms)

Refrigeration System Has Functioned for Several Years with a 30% Design Margin

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The Moderator Vessel Is the One Component that Sees High Radiation Fields and Thus High Heat Loads

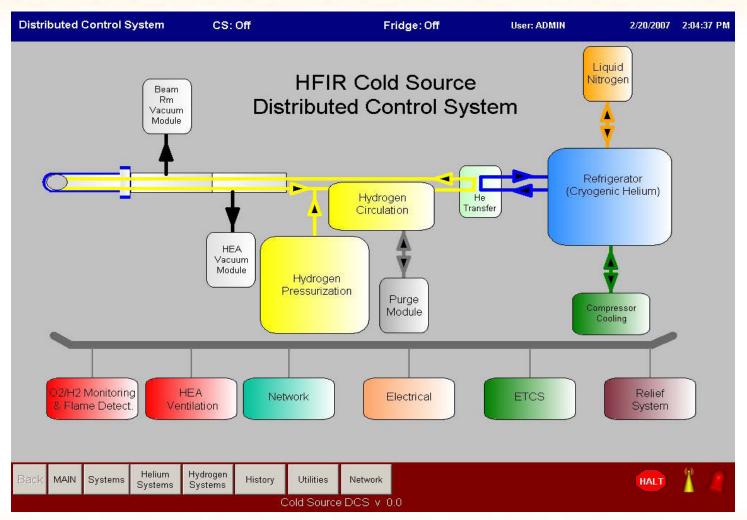
- Moderator vessel is made from 6061-aluminum.
- Vessel is fabricated in two pieces out of a solid piece of aluminum.
- Vessel has been tested up to 1.5 times the design pressure which is twice the operating pressure.
- Prototypic weld has been tested to failure at over 10 times the operating pressure.

The Hydrogen Transfer Module Supplies Hydrogen Inventory Control

- Hydrogen storage tank contains most of the hydrogen when the system is warm, but is at low pressure when the cold source loop is in normal cold operation mode.
- Hydrogen additions to the closed system will be made out doors at the tank using hydrogen bottles.
- A hydrogen qualified pressurizer pump will be used to raise the pressure of the hydrogen prior to its injection into the primary hydrogen loop.

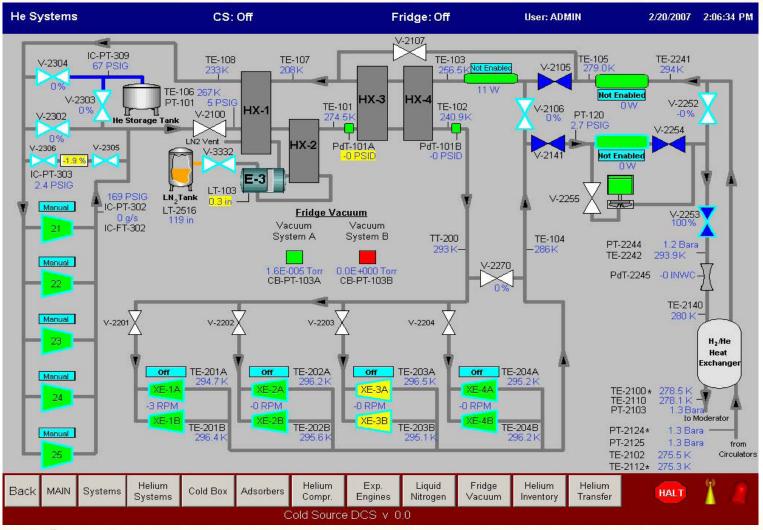
HFIR Cold Source Safety Guiding Principles

- Cold source shall not have a significant negative impact on the reactor or reactor safety systems
- Cold source shall not have a significant impact on the risk to onsite personnel
- Cold source shall be self protecting


HFIR Cold Source Control System is Interfaced With the Reactor Control System Through Three Reactor Scrams to Protect the Cold Source

- Low hydrogen flow events
- High hydrogen temperature events
- Loss of hydrogen inventory (low hydrogen pressure) events

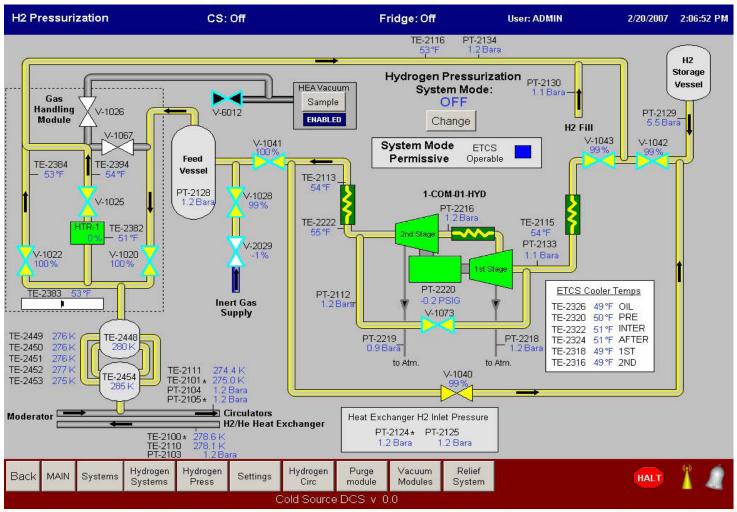
HFIR Cold Source Control System Menu Page



Cold Source Refrigerator Control Page



Cold Source Main Hydrogen Control Page



Cold Source Hydrogen Feed and Pressure Control Page

One of Five Cold Source Annunciator Panels

Annunciator Panel 3	CS: Off		Fridge: Off	User: ADMIN	2/20/2007 2:13:17 PM
ANN-061	ANN-062 R H2 CIRCULATOR DP LO CSA-3134, 35, 36	ANN-063 H2 CIRCULATOR ENCLOSURE PRESS CSA-3142ABNORMAL	R ANN-064 R H2 CIRCULATOR FAULTED	ANN-065 H2/HE HTX H2 DELTA TEMP LO CSA-3137	ANN-066 H2/HE HTX H2 INLET PRESS ABNORMAL CSA-3127
ANN-067 H2/HE HTX H2 OUTLET TEMP ABNORMAL	ANN-068 H2 CIRCULATION SYSTEM SENSOR FAULT	ANN-069 MODERATOR H2 RETURN PRESS ABNORMAL	ANN-070 MODERATOR H2 RETURN TEMP HI	ANN-071 GHM RELIEF TEMP LO	ANN-072 GHM SAMPLE LINE TEMP ABNORMAL
CSA-3131 ANN-073 H2 FEED VESSEL MOISTURE HI	CSA-3143 ANN-074 H2 COMPR OIL PRESS LO	CSA-3126 ANN-075 H2 COMPR INLET PRESS LO	CSA-3130 ANN-076 ETCS CIRC PMPS DISCH FLOW ABNORMAL	CSA-3124 ANN-077 HE COMPR DISCH PRESS ABNORMAL	CSA-3121 ANN-078 HE COMPR SUCTION PRESS ABNORMAL
CSA-3152 ANN-079 HE COMPR FLOW LO	CSA-3108 ANN-080 H2 COMPR H2 INLET TEMP LO CSA-3108	CSA-3108 ANN-081 HE FLOW PATH NOT ESTABLISHED	CSA-3299	CSA-3224 ANN-083 CB ADSORBER TEMP HI	CALORIMETER TEMP HI
ANN-085 R FUSE 122, 123, 124 OR 125 BLOWN CSA-3232	ANN-086	ANN-087 VACUUM SYSTEM FAILED	R COLD BOX VACUUM ABNORMAL	ANN-089 F VACUUM SYSTEM VALVE ALIGNMENT ABNORMAL	ANN-090 R HE COMPR FAILED TO START CSA-3236
Acknowledge Pa	age	◀ 1 2	3 4 5		Reset
Back MAIN Systems	Transfer Administration Told	sable /			HALT A

Present Status of Cold Source

- All equipment has been installed, tested, and is in the process of being declared operable
- Hydrogen has been loaded into the system and cooled to as low as 16.5 K with a maintainable stable steady-state condition
- All testing with in-line heater representing reactor heat load has been completed
- DOE Operational Readiness Review is scheduled for April 9
- If all goes well, reactor startup with functional cold source should be in May

