
Neutronics computations in support of the CABRI core safety analysis

O. Guéton, G. Ritter, F. Jeury, C. Hee, B. Duc, C. Döderlein, A. Colas

IGORR 10/28/2009 Neutronics Computation in support to the CABRI Core

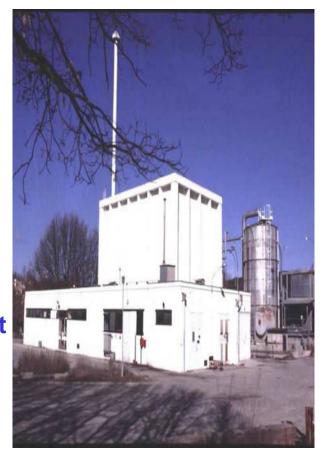
CADKRACHE

Table of contents

Context

- CABRI description and mains goals
- Phenomenology, operating principle

Neutronics characterizations


- Neutronics parameters reevaluation
- Validation

Predictive methodology development to assess the energy release during experiment

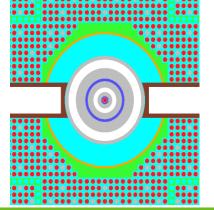
- Description
- Validation
- Application to safety assessment

Conclusion

Economic and Safety issues

<u>CABRI is an experimental reactor, operated by the CEA and devoted to safety programs.</u>

Historically: Improve the fuel behavior knowledge (RIA&LOCA)

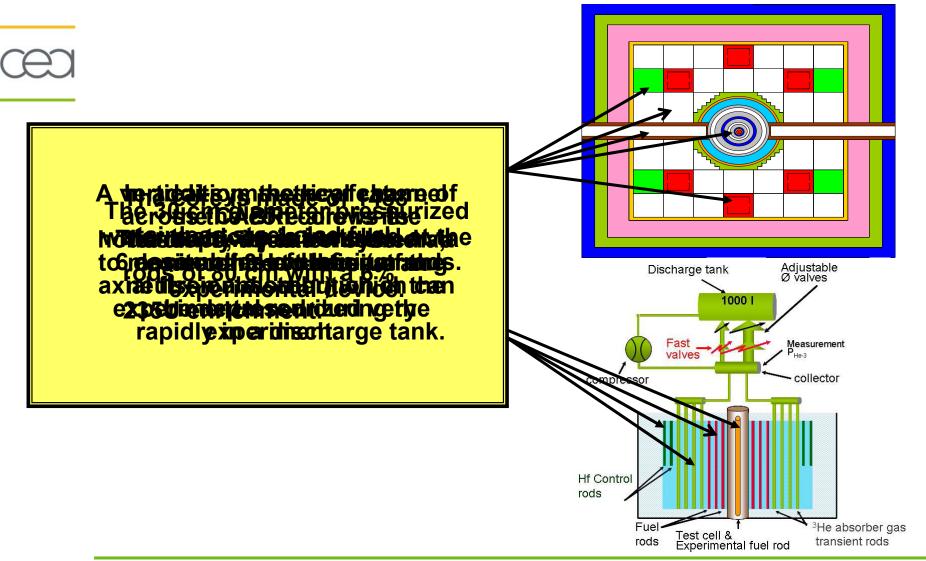

Most of the experiments were dedicated to fast reactors

■ 2003: Installation shut down for renovation

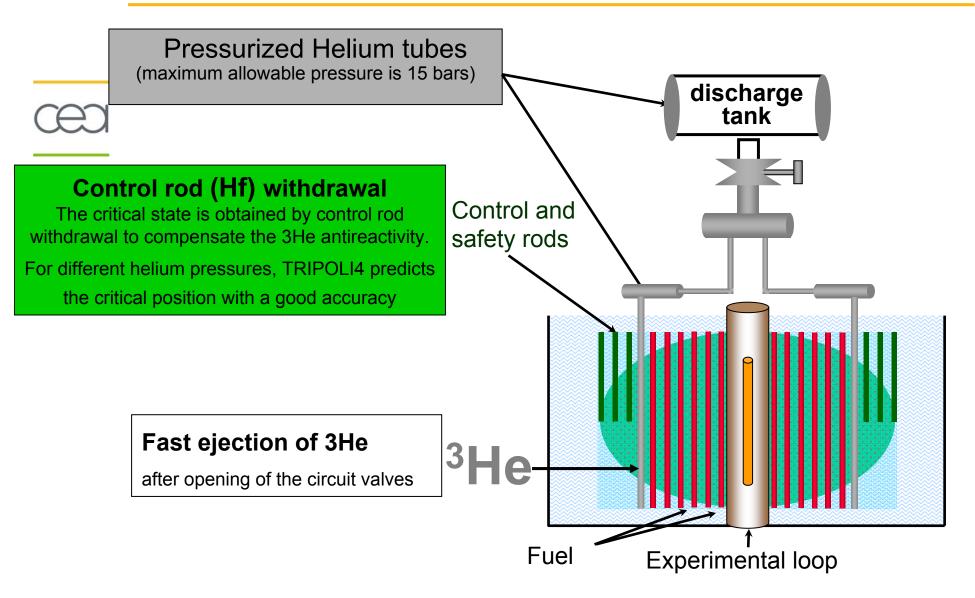
 Sodium cooled experimental loop → pressurized water loop: The main goal is to meet thermal hydraulics parameters identical to LWR.

■ **2008**: Safety report for the new configuration

■ <u>2010</u>: Commissioning tests & start-up



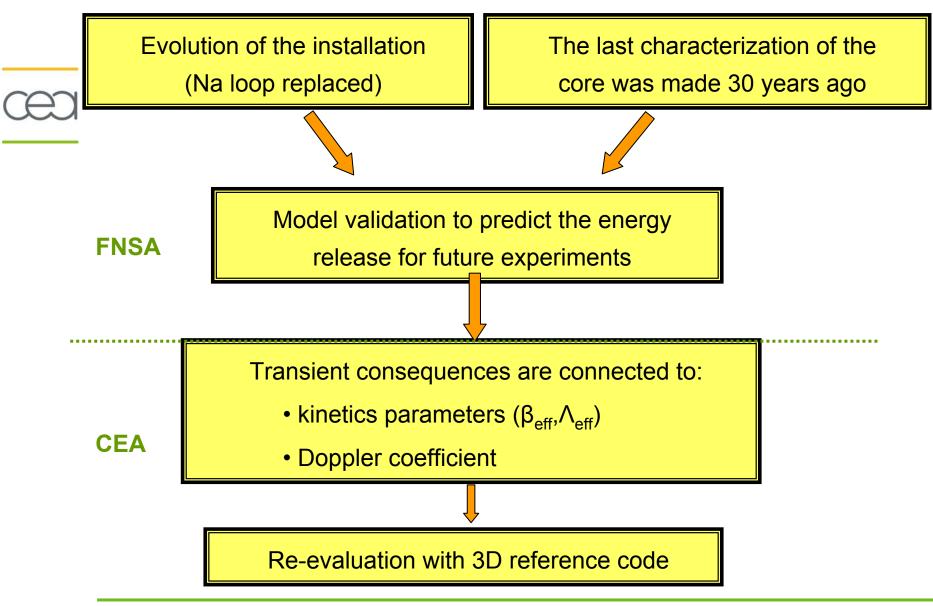
Description of the CABRI core



IGORR 10/28/2009 Neutronics Computation in support to the CABRI Core

CADARACHE

Phenomenology


Phenomenology of the experiments

IGORR 10/28/2009 Neutronics Computation in support to the CABRI Core

CADKRACHE

What was the problematic in the safety report (2008)?

Neutronics characterizations in CABRI core by MC calculation

Doppler coefficient

Using the reactivity determined at different fuel temperatures by the TRIPOLI4

 \bigcirc code: $\Delta \rho^{\text{doppler}}(t) = A_D \cdot \sqrt{\Delta T} \approx 103 \ pcm \cdot K^{-0.5}$

Effective generation time (Λ_{eff})

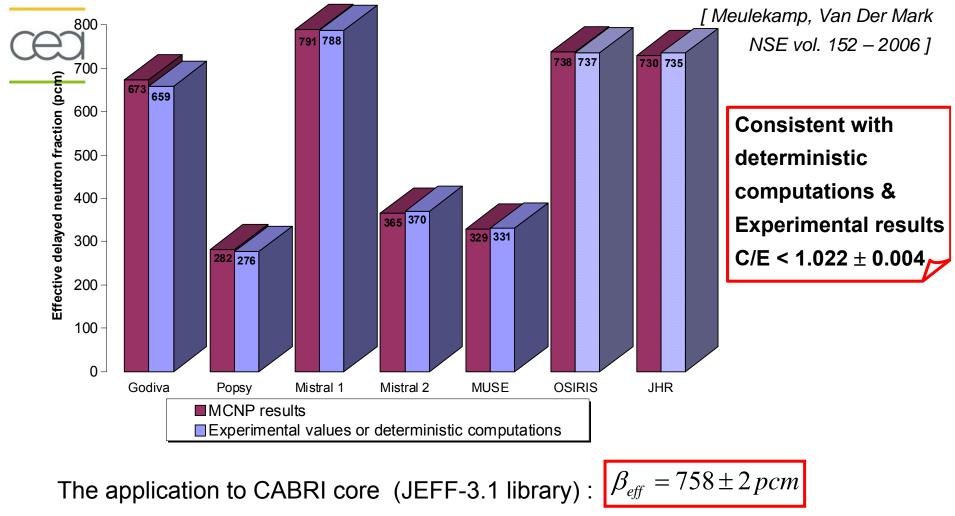
Using a method based on perturbation theory with MC calculations.

The results are compared with experimental measurements and deterministic computations.

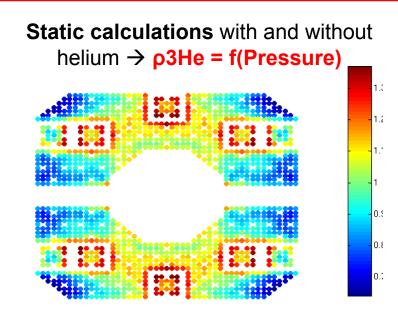
	Expected values	MCNP results
MASURCA (MUSE4 experiment)	$56\pm5\ \mu s$	$53\pm5~\mu s$
OSIRIS (deterministic calculation)	$34.7\pm2\mu s$	$34.0\pm1.1\mu s$
JHR (deterministic calculation)	$36.0\pm2\mu s$	$38.7 \pm 1.4 \mu s$

Agreement MCNP results / expected values allows us to trust this method

The application to CABRI core (JEFF-3.1 library) :

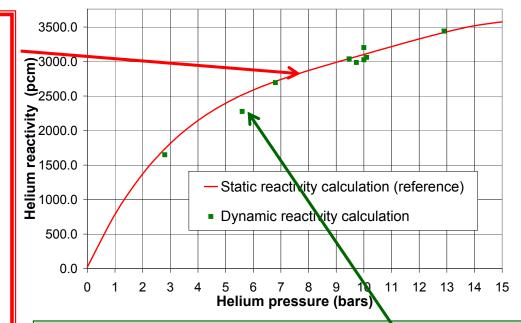

$$\Lambda_{eff} = 27.7 \pm 2\,\mu s$$

Neutronics characterization in CABRI core by MC calculation


Effective delayed neutron fraction (β_{eff})

Using a method based on iterated fission probability and available in a MCNP patch

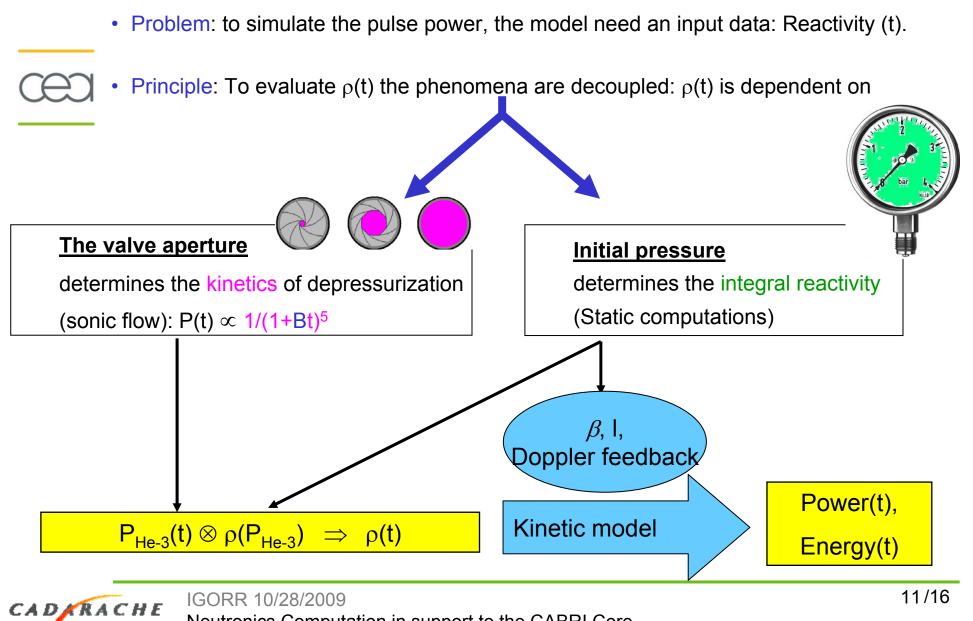
CADKRACHE


A test is characterized by the injected Helium reactivity

Confident in this result because:

✓ TRIPOLI4 is a reference code and helium 3 cross section are well known

✓ TRIPOLI4 reactivity calculations are validated (for different helium pressure, the predicted critical position by the code is always consistent with the experimental data)



Dynamic Calculations (using β_{eff} , Λ_{eff} , Doppler) Experimental power bursts obtained in the past can be interpreted by inverse kinetics. One can determine the injected helium reactivity for different tests (performed at different helium pressure) $\rightarrow \rho^{3He} = f(Pressure)$

The 2 independent methods are consistent \rightarrow the kinetic model is validated

IGORR 10/28/2009 Neutronics Computation in support to the CABRI Core

Neutronics Computation in support to the CABRI Core

Prospective methodology validation

To assess the accuracy of the predicted energy values, the methodology is applied to the simulation of several tests performed in the past

Test	Energy Measurement	Energy Prediction	
	(MJ)	(MJ)	(%)
Test 1	209	195	-6
Test 2	204	197	-3
Test 3	212	199	-6
Test 4	213	203	4
Test 5	224	227	1
Test 6	172	176	2

Maximum Discrepancy ~ 6%

Good agreement between measured and predicted energy better than 6%.

The same predictive approach is used to characterize the energy release during the most severe possible accident

	<u> </u>		
(e)		Peak Power (GW)	Energy release (MJ)
	Reference Accident	38.6	382
	15 bars-valves at full aperture		+6% <i>→</i> 403
	SCANAIR code (p	the consequences are	<image/>

 \checkmark The main neutronics parameters driving a power pulse were reevaluated by 3D Monte Carlo reference codes.

 $\checkmark\,$ The code including thermal and point kinetics models is validated.

 \checkmark The comparison between predictions and experimental results shows the model predictions are better than 6%.

 \checkmark This model is used to assess the power and energy release during the reference accident of the CABRI facility: computations attest the fuel and cladding integrity during the transient.

ANNEXE 1 : Calcul du β_{eff}

$$\beta_{eff} = \frac{\langle \Phi^* \chi_d \nu_d \Sigma_f \Phi \rangle}{\langle \Phi^* \chi \nu \Sigma_f \Phi \rangle}$$

Dans un calcul Monte-Carlo : Pas de modèle physique, pas d'équation : la notion de flux adjoint Φ^* (ou d'importance neutronique) n'existe pas.

Alternatives :

- On supprime $\Phi^* \rightarrow$ on calcule β_0 (~ environ 10 % inférieur à β_{eff})
- Méthode prompte : approximation $\Phi = \Phi_p$ et $\Phi^* = \Phi^*_p \rightarrow \beta_{eff} \cong 1 \frac{k_p}{k}$ avec $k_p = k_{eff}$ si $\chi = \chi_p$ et $\nu = \nu_p$.

• Méthode NRG \rightarrow on estime Φ^* par IFP ou plus précisément NFP : MCNP stocke la « longueur d'histoire » afin de restituer la notion d'importance.

Calcul MCNP CABRI – bib. JEFF3.1			
β ₀	716 pcm		
β _{eff} (méthode prompte)	762 pcm		
β _{eff} (méthode NRG)	758 pcm		

Calcul du temps de génération (I_{eff})

$$\Lambda_{eff} = \frac{\left\langle \Phi^*, \frac{1}{v} \Phi \right\rangle}{\left\langle \Phi^*, F \Phi \right\rangle}$$

Théorie des perturbations : $\Delta \rho = \frac{\left\langle \Phi_0^*, [\lambda_0 \Delta F - \Delta K] \Phi_1 \right\rangle}{\left\langle \Phi_0^*, F_1 \Phi_1 \right\rangle}$

Cas particulier : ajout uniforme d'un poison de section efficace microscopique de capture en c/v

 $-\Delta K = c/v$: l'absorption se rajoute aux causes de disparitions des neutrons;

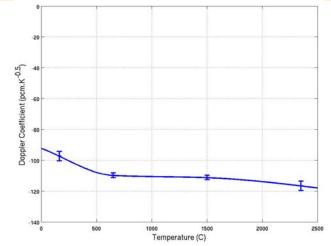
– $\Delta F=0$: pas de modification de l'opérateur production.

$$\Delta \rho = \rho_c - \rho_0 = -\frac{\left\langle \Phi_0^*, \frac{c}{v} \Phi_c \right\rangle}{\left\langle \Phi_0^*, F_0 \Phi_c \right\rangle}$$
$$\left(\frac{\partial \rho}{\partial c}\right)_{c=0} = \lim_{c \to 0} \frac{\rho_c - \rho_0}{c} = \lim_{c \to 0} \frac{1}{c} \frac{\left\langle \Phi_0^*, \frac{c}{v} \Phi_c \right\rangle}{\left\langle \Phi_0^*, F_0 \Phi_c \right\rangle} = \frac{\left\langle \Phi_0^*, \frac{1}{v} \Phi_0 \right\rangle}{\left\langle \Phi_0^*, F_0 \Phi_0 \right\rangle}$$

 $\Lambda_{eff} = -\frac{\Delta\rho}{c} \qquad \begin{array}{c} \mathsf{C}\\ \mathsf{st} \end{array}$

Compromis : c doit tendre vers 0 tout en permettant une précision statistique sur $\Delta \rho$ suffisante. « Verboomen et al. » préconisent $\Delta \rho \sim 300$ pcm

Rq :le temps de génération est accessible avec T4 (conforme à MCNP)


IGORR 10/28/2009 Neutronics Computation in support to the CABRI Core

Neutronics characterizations in CABRI core by MC calculation

Doppler coefficient

Using the reactivity determined at different fuel temperatures by the TRIPOLI4 code

$$\Delta \rho^{\text{doppler}}$$
 (t) = A_D. $\sqrt{\Delta T} \approx 103 \text{ pcm}$. K^{-0} .

Effective generation time

Using a method based on perturbation theory with MC calculations.

The results are compared with experimental measurements and deterministic computations.

	Expected values	MCNP results
MASURCA (MUSE4 experiment)	$56\pm5~\mu s$	$53\pm5~\mu s$
OSIRIS (deterministic calculation)	$34.7\pm2\mu s$	$34.0\pm1.1\mu s$
JHR (deterministic calculation)	$36.0\pm2\mu s$	$38.7\pm1.4~\mu s$

Agreement MCNP results / expected values allows us to trust this methodology

The application to CABRI core (JEFF-3.1 library) :
$$\Lambda_{_{e\!f\!f}}=27.7\pm2\,\mu\!s$$

IGORR 10/28/2009 Neutronics Computation in support to the CABRI Core