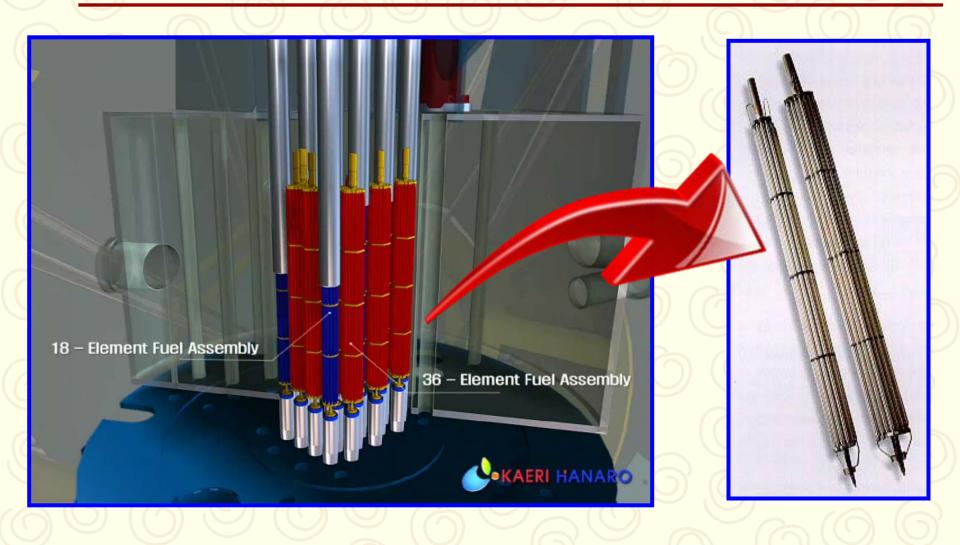
12th IGORR October 28- 30, 2009, Beijing, China



The Current Status of the Spent Fuel Management in HANARO

Lee, Mun <u>mlee@kaeri.re.kr</u> HANARO Management Division Korea Atomic Energy Research Institute

Contents

- I. The Current Status of Spent Fuel Management
- II. The Enlargement of The Spent Fuel Storage Capacity
- **III. Options for Final Disposal**

HANARO Fuel Assemblies

HANARO Spent Fuel Storage

TRIGA Mark II and III were shut down permanently in 1996 for decommissioning.

The total number of spent fuel from their operation was 299 fuel rods (0.05 * MTU).
* MTU - metric tons of uranium

They were shipped back to the DOE, U.S.A. by the "Take-Back" program in 1998.

Take-back of spent fuel used for TRIGA MARK II & III

Operating the spent fuel cooling and purification system continuously

Controlling parameters

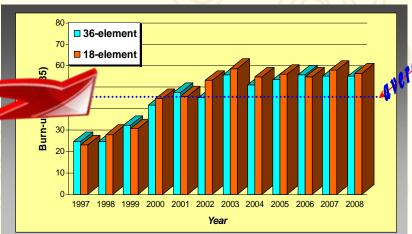
- Conductivity
- Cl + F-

- pH - Turbidity

Monitoring SF pool surface radiation and analyzing radio-nuclides for monitoring of the SF leakage periodically.

Activities for the water quality management

Parameters	Measurement Value	Allowable Value	Periods 8 hours	
Pool Temperature	22 ~ 32 °C	10 ~ 40 °C		
Surface Radiation of SFP	0.26 µSv/hr	25 Sv/hr	8 hours	
Conductivity	0.31/0.15 uS/cm	5 uS/cm	8 hours	
Radio-nuclides	Cs-137 etc.		Monthly	
рН	5.7	5.5 ~ 6.6	¹ ⁄2 year	
CI ⁻ + F ⁻	< 0.05 µg/mL	< 0.2	1⁄2 year	
Turbidity	< 0.5 NTU	<1	1⁄2 year	


Parameters for Water Quality Management

Type of Fuel	Number of	Average Burn-up	Origin Country		Weight of	Weight of Uranium	
	Elements	(%U-235)	US	Russia	U-235	(g)	
18-element	110	46.90	102	8	27,345	138,384	
36-element	200	45.20	133	67	86,582	438,272	
Total	310	-	235	75	113,927	576,656	

The total number of the spent fuel as of 2008 was 324 assemblies and 310 of them are stored at the spent fuel storage pool

Average burn-up rate of the discharged fuel went up to 55 % in the beginning.

The origins of the fuel enrichment were the USA and Russia.

Average burn-up of the discharged fuel

II. The Enlargement of the Spent Fuel Storage

The capacity of the SF storage is for storing the spent fuels from TRIGA Mark as well as from HANARO for 20 years.

The racks for 36 element assemblies will reach its capacity in 2024 and the ones for 18 element ones will reach its capacity in around 2027.

The life expansion of HANARO is inevitable.

II. The Enlargement of the Spent Fuel Storage

The Ways to enlarge the SF
 Change the design of the storage module

Use the space for TRIGA spent fuels

II. The Enlargement of the Spent Fuel Storage

<Before>

<After>

As of 2008

Type of Fuel	f	tal Capacity Spent Fuel	Total Number of Spent Fuel	Ratio of Occupied SF	Limits of Storage Capacity
18-element	9	432	115	26.6%	2027
36-element		600	209	34.8%	2024
0~~				7) (Ó) (F	

Type of Fuel	Total Capacity for Spent Fuel	Before/After	Enlarged Ratio	Limits of Storage Capacity
18-element	720	720/432	67%	2042
36-element	984	600/984	64%	2038

III. Options for Final Disposal

Option A.

Return the spent fuel from HANARO to the country of origin

- Option B.
- Use pyro-processing technology which is a national strategy of Korea.

Thank you for your attention

