Sustaining Material Testing Capacity in France: From OSIRIS to JHR

Gilles Bignan, Christophe Blandin, Stephane Loubière, Daniel Iracane French Atomic Energy Commission

Plan of the presentation

ScEA Strategy on MTR: European situation

SOSIRIS Status and experimental capacities

STransition from OSIRIS to JHR: Using the Know-How of OSIRIS (example of Ramps, Instrumentation...)

\$ JHR Status and experimental capacities

5 JHR as an International User's Facility

The needs: Major Scientific Challenges

Design and qualification of new fuel or material : the R&D cycle

Cerror Context: An ageing fleet of MTR in Europe

12th International Group On Research Reactors – Beijing, Oct. 28-30, 2009

The OSIRIS reactor

- Main characteristics of OSIRIS research reactor :
 - Open core pool type
 - Compact core : 57*57*60 cm³
 - Fuel
 - 38 standard elements
 - 6 control elements with Hafnium as absorber
 - U3Si2AI plates (enriched to 19.75 %)
 - Moderator, coolant et biological protection : H₂O
 - Thermal power : 70 MW
 - Maximum neutron flux
 - fast (E>1 MeV) : 2.5 E¹⁴ n/cm²/s
 - thermal : 2.5 E¹⁴ n/cm²/s

The main goal of OSIRIS reactor is to carry out irradiation tests of fuel and structural materials of nuclear power plants, and to produce radioisotopes

The current status of OSIRIS

- Annual operation :
 - 180 operating days (8 cycles)
 - Intercycles of around 10 days
 - Two specific maintenance periods in spring and summer
- Operation extended up to 2015
 - Specific up grades required by the Safety Authority to be performed before the end of 2010.
 - Polar cranes (2008 2009)
 - Truck hatch (2010)
 - Control rod room (-15 m) (2010)
 - Ventilation system (2009 2010)

The material irradiation devices (OSIRIS)

- Goals:
 - Material irradiations (grids, fuel clad, pressure tubes, vessel, guide tubes, ...)
 - Parametric studies, qualification, thermal mechanic behavior
 - Various reactors :
 - Gen 2, 3 and 3+ (Steel, Zircaloy, ...)
 - Gen 4 (SiC, ODS...)
 - MTR (Aluminum alloys)
- Main characteristics
 - Irradiated in core or in periphery of core
 - Temperature :
 - from 250 to 400 °C (+/-15°C) NaK
 - Up to 1100°C gas
 - 6 independent electrical heating elements automatically adjust the temperature
- Instrumentation
 - Thermocouples
 - Dosimeters of Fe, Cu and AlCo types
 - In situ dimensional measurements

The fuel irradiation devices (OSIRIS)

- IRIS device:
 - Irradiation of fuel plates for experimental reactors
 - Dimensional measurement (swelling) with an underwater bench between 2 irradiation phases

• MERCI/MOSAIC devices:

- Characterization of the decay heat of LWR fuel rods at short cooling times

• GRIFFONOS loop (boiler type):

- Irradiation of fuel rods under chemical and thermal hydraulic operating conditions representative of LWR ones
 - Behaviour of rods under flux (optimisation of performance), after or during fuel transients
 - Phenomena under study: measurement of central temperature of fuel as a function of burn-up and power, kinetics of fission gas release,...

DIODON :

REA

- On-line fuel rod instrumentation : central thermocouple, pressure sensor (monitoring of fission gas release), acoustic sensor (follow up the composition of the released gasses)
- Heat released by rod (max 600 W/cm) adjusted by displacing the rig and measured by neutron balance (SPND)
- ISABELLE loop:
 - Power transients of shortened fuel rods under chemical and thermal hydraulic operating conditions representative of LWR ones

Preparing JHR with OSIRIS: from ISABELLE to ADELINE (1/2)

 A one rod loop device for up to limit irradiations of LWR fuel samples

- In reflector
- On displacement system
- Heavy components in bunker
- Characterization and qualification of fuel samples
 - Power ramp tests
 - Power to melt
 - Rod over-pressure threshold (lift off)
 - Post failure behaviour
 - Water contamination in case of failure
- All type of LWR fuel samples
 - PWR / BWR fuel samples
 - UO2 fuels (up to $5\% \rightarrow 7\%$ in U5)
 - MOX fuels (up to 15% Pu/(U+Pu))
 - Fresh fuels
 - High burn up fuels (90 \rightarrow 120 GWd/t)
- Chemistry, thermal hydraulic conditions representative of LWR ones

Preparing JHR with OSIRIS: from ISABELLE to ADELINE (2/2)

A device able to reach high power level and high power ramp

- Max linear power : 620 W/cm
- Up to 800 W/cm for fresh fuels
- Power ramps speed up to of 700 W/cm/min
- On line measurements (numerous and precise sensors)
 - Temperature, pressure
 - Thermal balance
 - Clad failure detection
 - Gamma activity measurement
 - Delayed neutron detector
 - Elongation sensor
 - SPND
 - Fission gas release

Several interfaces with associated services

- Non destructive examination
 - Gamma spectrometry,
 - Neutron radiography
 - X radiography
- Direct link to Fission Product laboratory
- Tight interface with alpha fuel cell for post-irradiation examination

Preparing JHR with OSIRIS: the R&D program on instrumentation within an international framework

Preparing JHR with OSIRIS: the CEDRIC experiment

- Goal : on line elongation measurement of a high temperature specimen (SiC/SiC mini-composite) under driven stress.
- Key features :
 - Irradiation started in OSIRIS in 2008
 - 1000°C, gas coolant
 - Online-controlled stress by :
 - Pneumatic loading unit
 - Online measurement :
 - Elongation measurement with a selfcompensating LVDT (by IFE Halden)

Preparing JHR with OSIRIS: the MELODIE experiment

• **Goal :** to assess the interest of a biaxial, onlinecontrolled concept for the creep study of fuel cladding

- Irradiation start in OSIRIS : 2011
- Joint CEA-VTT team in the framework of the JHR project

LVDT

Traction bellows

Compressior bellows

Zv-4

tube

90mm

cladding

Diameter

gauge

- 350°C, static NaK coolant
- Stress limits σr σz : 120 180 MPa
- Online-controlled biaxial stress by :
 - Sample pressurization
 - Push-pull axial loading cell
- Online biaxial measurement :
 - Elongation measurement with a self-compensating LVDT (by IFE Halden)
 - Diameter measurement with an electromagnetic gauge (DG) designed by IFE and CEA

See more details on these two experiments in the proceedings of this conference

JHR status: an MTR optimised to support industrial & public needs

Safety and Plant life time management (ageing & new plants)
Fuel behaviour validation in incidental and accidental situation
Assess innovations and related safety for future NPP: Gen 3 and Gen 4
Training of new generations

œ

JHR Consortium, a framework to operate JHR as a User-Facility

SJHR Consortium, economical model for investment & operation

- \checkmark CEA, owner & nuclear operator with all liabilities
- ✓ JHR Members owner of Guaranteed Access Right
 - TA Member can use totally or partly his access rights
 - For implementing proprietary programs with full property of results
 - and/or for participating to the Joint International Programs with other Partners (JHIP)

[©]Operation cost paid only for utilized access rights

Non-Partners access under decision of the Board

SJHR present partnership: research centers & Industrial companies

Spring 2007 **Building Site at Cadarache Summer 2007**

œ

JHR realisation progress

Site preparation and excavations completed

- Section Procurement process
 - ✓ Two major contracts have been engaged end of 2008 corresponding to almost 50% of the construction cost

[©]Engineering team contract for the realisation phase

- Civil work contract
- Scheme Licensing process (Creation Decree: October 2009)

✓ Positive assessment of the Preliminary Safety Analysis Report

JHR site excavation is now completed present phase: civil work (first concrete 6th August 09)

JHR General presentation

Fuel elements and in-core experimental location

Reference LEU high density Fuel for the JHR Project : UMo 8g/cc (19.75%)

<u>Back-Up:</u>

U3Si2: ≤27% U5, 4,8gU/cm³ Cladding Al FeNi

experimental locations: \emptyset 32 or \emptyset 80 mm

12th International Group On Research Reactors – Beijing, Oct. 28-30, 2009

12th International Group On Research Reactors – Beijing, Oct. 28-30, 2009

Preparing JHR as an International User Facility: launching Jules Horowitz International Programme (JHIP) First Phase : 2012 → 2015 (existing facilities) Second Phase: 2016 → 2020 (JHR)

- ✓ To address fuel and materials issues of common interest that are key for operating plants and future NPP
- ✓ Centred around an efficient utilization of JHR features
- ✓ Operates in synergy with technical infrastructure and expertise available in OECD countries
- Sorganisation: To implement the JHIP with the support of OECD/NEA as a secretariat

Stechnical scope (Ramps, LOCA, Source Term...)

Conclusion: Preparing JHR success with OSIRIS experience...

- ♦ OSIRIS is successfully operating until the end of 2015
- CEA is maintaining significant R&D programs for experimentation improvements in MTR (instrumentation...)
- Strong Feedback from OSIRIS operation (close link with JHR team for operation procedures, safety analysis...)
- ✤ JHR will offer a wide experimental domain
 - ✓ Some experimental hosting systems are under development
- ♦ Anticipation of Users' needs

- ✤ JHIP is a natural framework for a Users community willing to impact the JHR experimental capacity setting up.
- International scientists (young fellows and/or senior experts) are welcome in Cadarache within the JHR team in order to build the future JHR scientist community

Thank you for your attention...

謝謝您的注意

gilles.bignan@cea.fr christophe.blandin@cea.fr

