James Martin Center for Nonproliferation Studies, Monterey Institute

- Graduate program
   Professional
  - certificate

Fellows program
Research
Policy advice



How Can the Availability of Safe and Secure Research Reactors Be Assured in Future?

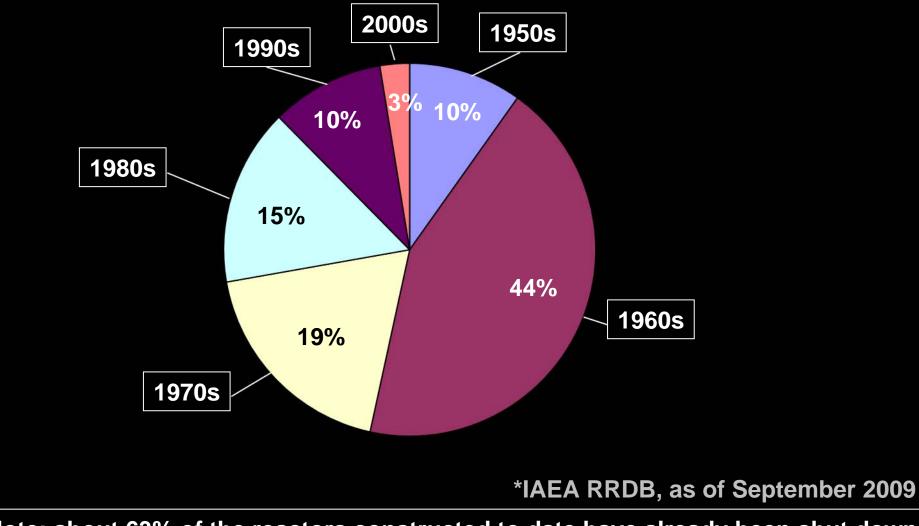
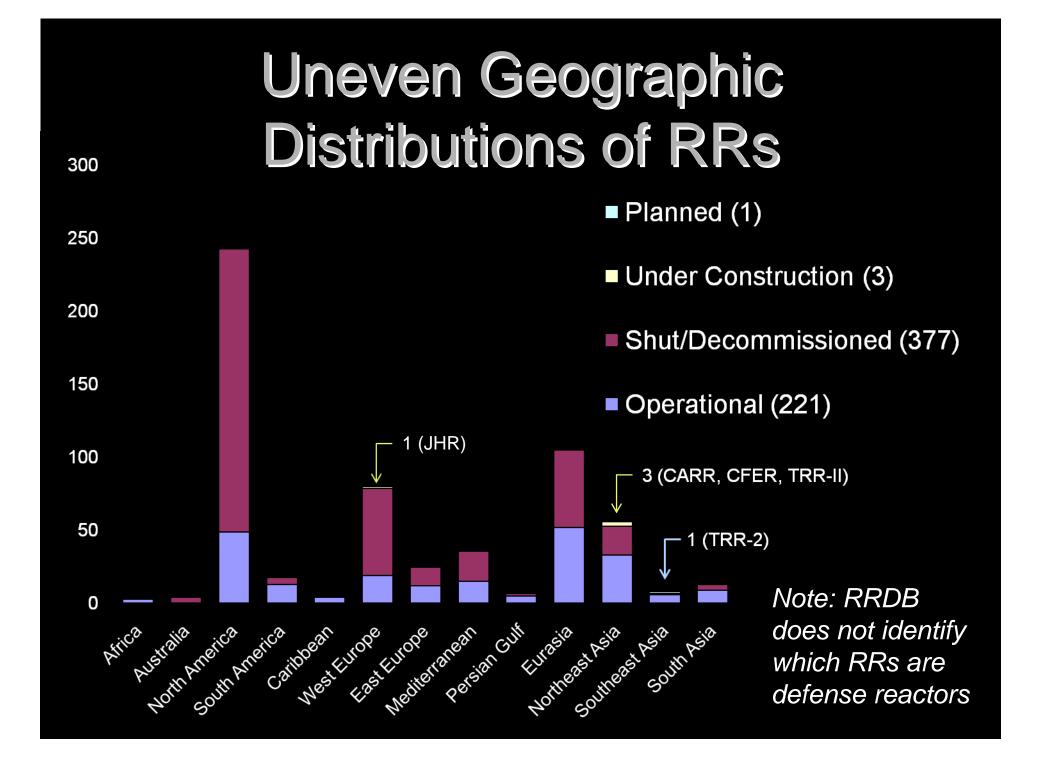

Cristina Hansell Director, NIS Nonproliferation Project James Martin Center for Nonproliferation Studies, Monterey Institute of International Studies

Photo source: Idaho national lab

## **Research Reactors Today**

- 245 listed in IAEA research reactor database (RRDB) as operational
- Variety of reactor types, levels of neutron flux, and core size
- Are these reactors being effectively utilized? Will they meet future user needs?
- If not, how can these needs be met while minimizing proliferation risks? Meet Nuclear Nonproliferation Treaty Article IV commitment?

# Age of Operational Research Reactors, by Criticality Date\*




Note: about 63% of the reactors constructed to date have already been shut down

# Increasing RR Construction Costs

- Brazil's IPR-RI (TRIGA Mark I): \$250,000 in1960 (\$1.8 million today)
- Morocco's MA-R1 (TRIGA Mark II): \$4.2 million in 2007.
- High-end research reactors:
  - MURR: \$3.5 million in 1966 (\$23.3 million)
  - HFIR: \$14.6 million (\$100 million today)
  - FRMII: \$435 million
  - OPAL: estimated \$400 million for OPAL (cost not listed in IAEA RRDB).

*Note:* not clear what costs the IAEA RRDB captures



# Developing a RR park for the Future

#### • Research:

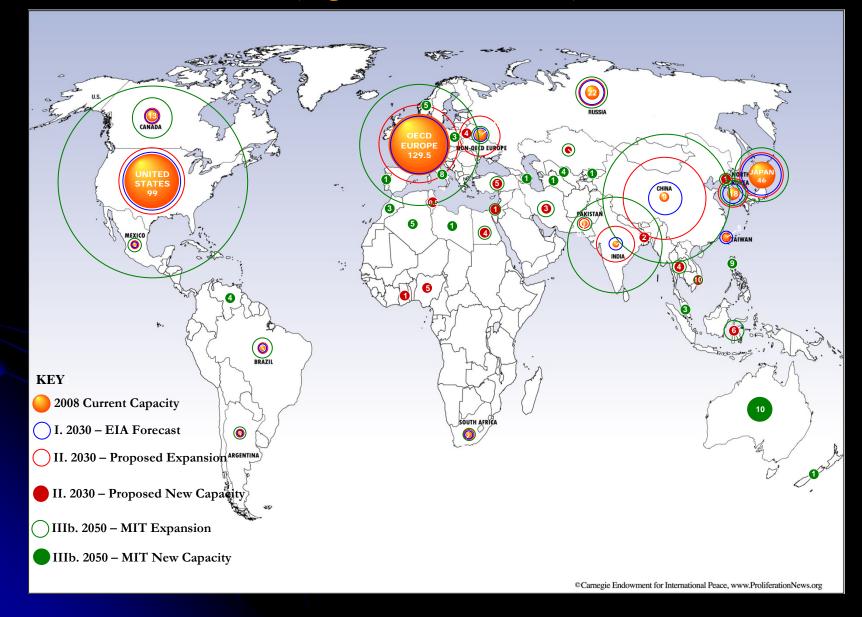
"Materials irradiation studies utilizing fission reactors are becoming more and more expensive and time consuming. Collaboration among organizations participating fission-reactor materials irradiation will be inevitable." —Tatsuo Shikama, Tohoku University (IAEA, Nov. 2008)

- Medical isotope production: problem relying on national reactors and market mechanisms
- Training reactors: not available in many states considering NPP construction

## Major Mo-99 Production Reactors

| Reactor                       | NRU                                                                                      | BR-2                                                                                    | HFR                                                                                      | SAFARI                                                                                  | OSIRIS                                                                                         |
|-------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Criticality                   | 1957/11/03                                                                               | 1961/06/29                                                                              | 1961/11/09                                                                               | 1965/03/18                                                                              | 1966/09/08                                                                                     |
| Ave. Power                    | 135 MWt                                                                                  | 100 MWt                                                                                 | 45 MWt                                                                                   | 20 MWt                                                                                  | 70 MWt                                                                                         |
| Max Thermal<br>Flux (n/cm2-s) | 4.0E14                                                                                   | 1.0E15                                                                                  | 2.7E14                                                                                   | 2.4E14                                                                                  | 2.7E14                                                                                         |
| Utilization                   | Hrs/Day <b>24</b><br>Days/Wk <b>7</b><br>Wks/Yr <b>39</b><br>MW Days/<br>Yr <b>32300</b> | Hrs/Day <b>24</b><br>Days/Wk <b>7</b><br>Wks/Yr <b>15</b><br>MW Days/<br>Yr <b>6500</b> | Hrs/Day <b>24</b><br>Days/Wk <b>7</b><br>Wks/Yr <b>44</b><br>MW Days/<br>Yr <b>12640</b> | Hrs/Day <b>24</b><br>Days/Wk <b>7</b><br>Wks/Yr <b>44</b><br>MW Days/<br>Yr <b>6060</b> | Hrs/Day <b>24</b><br>Days/Wk <b>7</b><br>Wks/Yr <b>36</b><br>MW Days/<br>Yr <b>15000</b>       |
| Recent<br>developments        | Shut down<br>Nov-Dec<br>2007; May<br>2009-present                                        | Aug-Nov<br>2008, Mo99<br>production<br>facilities shut<br>after I131<br>release         | Shut down<br>Aug. 2008-<br>Feb. 2009;<br>extensive<br>renovations<br>begin March<br>2010 | Max'ing<br>Mo-99,<br>shortened<br>maintenance<br>Aug. 30-Sept<br>4, 2009                | Increased<br>production.<br>Got<br>regulatory<br>permission to<br>employ<br>Petten<br>targets. |

#### Potential major Mo-99 producers include...


| Reactor          | Steady<br>Power,<br>Therm. | Max Thermal<br>Flux<br>(n/cm2-s) | Utilization<br>Hours/<br>Day |   | Weeks/<br>Year | MW Days/<br>Year |
|------------------|----------------------------|----------------------------------|------------------------------|---|----------------|------------------|
| MURR             | 10 MW                      | 6.0E14 BR2                       | 24                           | 6 | 52             | 3285             |
| HANARO           | 30 MW                      | 4.5E14                           | 24                           | 3 |                | 3248             |
| JMTR             | 50 MW                      | 4.0E14                           | 24                           | 7 | 26             | 9000             |
| MARIA            | 30 MW                      | 3.5E14                           | 24                           | 5 | 40             | 3000             |
| TRIGA II Pitesti | 14 MW                      | 3.3E14                           | 24                           | 7 | 40             |                  |
| OPAL             | 20 MW                      | 3.0E14                           |                              |   |                |                  |
| ETRR-2           | 22 MW                      | 2.8E14 HFR                       | ,24                          | 1 | 48             | 920              |
| Siwabessy MPR    | 30 MW                      | 2.52E140SIRIS                    | 24                           | 7 | 21             | 2160             |
| IRT-T            | 6 MW                       | 2.5E14                           | 24                           | 5 | 30             | 900              |
| IRT-1, Tajoura   | 10 MW                      | 2.0E14                           | 20                           | 1 | 14             | 55               |
| VVR-Ts           | 15 MW                      | 1.8E14                           | 24                           | 5 | 42             | 1900             |
| PARR-1           | 10 MW                      | 1.7E14                           | 12                           | 1 | 23             | 150              |
| RP-10            | 10 MW                      | 1.21E14                          | 6                            | 3 | 52             | 156              |
| RECH-1           | 5 MW                       | 7.0E13                           | 24                           | 1 | 50             | 250              |

### Mo-99: a reactor problem?

- Generator producers want more reactors but...
- Price paid for irradiation services low (though doctors willing to pay more for assured supply)
- Pharmaceutical companies waiting for state action and worry about overcapacity (profit margins slim)
- Oligopolistic market structure

#### NPP Growth – Various Scenarios

#### (Gigawatts electric, GWe)



|         | New Nu         | <u>uclear States</u>  | Latvia      | None (2 shut)          |
|---------|----------------|-----------------------|-------------|------------------------|
| Ø       | Country        | # RRs                 | Libya       | 1                      |
| )<br>Ut | Albania        | None                  | Malaysia    | 1                      |
| ote     | Algeria        | 2                     | Mongolia    | None                   |
| DO      | Azerbaijan     | None, planned         | Morocco     | 1                      |
|         | Bangladesh     | 1                     | Namibia     | None                   |
| S       | Belarus        | None operational      | Nigeria     | 1 MNSR                 |
| Ŕ       | Bosnia         | None                  | Norway      | 2                      |
|         | Chile          | 1 operational, 1 shut | Philippines | None (1 shut)          |
|         | Croatia        | None                  | Poland      | 1 (4 shut)             |
|         | Egypt          | 2                     | Portugal    | 1                      |
|         | Estonia        | None (dismantled)     | Thailand    | 1+1 in construction    |
|         | Ghana          | 1 MNSR                | Tunisia     | None (feas. study '01) |
|         | Indonesia      | 3                     | Turkey      | 1 (2 shut)             |
|         | Israel         | 2                     | Uganda      | None                   |
|         | Italy          | 4 (10 shut)           | U.A.E.      | None                   |
|         | Jordan Planned |                       | Venezuela   | None (1 shut)          |
|         | Kuwait         | None                  | Vietnam     | 1 (may construct)      |

# Planning: RRDB wish list

- Better reporting on duty cycles (MW/yr, vs. hours, days, etc.)
  - don't always match up; hard to determine if underutilized
- Aging

 criticality dates reported, but not planned shutdown date, whether RR modernized

- Uses reported in very general terms
  - Would be useful to know what instruments RR has (sometimes reported), flux at instruments & other key points, etc.

## **RRDB** wish list, continued

- Plans for future reactors (only rarely reported)
- Defense reactors vs. civilian
- International cooperation/opportunities for cooperation
- Website links?

Planning to have the right capacities, minimum risks
RRs vary in terms of security and proliferation risks
Type of fuel/enrichment

- Size of stockpiles (esp. at CAs)
- Level of burnup/age of spent fuel or target waste
- Ease of safeguarding (an increasing problem if numbers of reactors increase in NNWS)
- "Proliferation resistance" planning should include RRs, not just NPPs

 A failure anywhere would harm the global nuclear community

# 谢谢您的注意

#### Monterey Institute of International Studies

An affiliate of Middlebury College