

Irradiation Facilities and Examination Benches for Implementing Fuel Programs in the Future Jules Horowitz MTR Ω $\Delta V/V$ 0,5 % 1 2000 % D. Parrat, M. Tourasse, C. Gonnier, S. Gaillot, P. Roux **CEA Cadarache, Nuclear Energy Division** daniel.parrat@cea.fr IGORR 12 Conference, Beijing, P.R. of China, October 28-30, 2009

♥ Introduction

- ♦ An experimental capacity driven by users needs
- ✤ From fuel development process to experimental requests
- Status on fuel hosting systems under development
- ✤ Non destructive examination benches
- Sconclusions

œ

A new MTR is under construction in Europe since about 40 years

✤ Unique opportunity to design a whole irradiation device park

- ✓ In a modern safety frame
- \checkmark Targeted to offer maximum information during the experiment (on-line)
- \checkmark To fulfill end-user needs for several decades
- ✓ To identify the future needs for a suitable design is mandatory... but not so easy!
 ☞ Long term needs (> 2015) are generally not expressed
 - Tidentified short-term needs shall be solved in the coming years

CCC Milestones of a fuel product development process in MTR

Sélection / Characterization Qualification / Safety tests

10-15 years

Fuel material knowledge

- Input data for modeling
- Microstructure selection

Material studies

Numerous samples

Scientific stakes (Research, Fuel vendors)

Behavior understanding Laws and models set-up

- Separate effect experiments
- Instrumented samples
- On-line measurements
- Adapted LHGR time histories

Tests on industrial products

- Very high burn-ups
- Soliciting LHGR time histories
- Failed fuel rods
- Operation at the limits (ramps, lift-off, LOCA-type,...)
- Accidental situations (RIA, FCI...)

Test of industrial products

One single fuel rod

Operational stakes (Research, Utilities, Fuel vendors)

IGORR 12 Conference, Beijing, P.R. of China, October 28-30, 2009

5/19

Simulation tools are often not sufficiently validated when:

Why are fuel irradiations in MTRs necessary for

supporting the fuel development process?

- ✓ Fuel product is improved, or is planned to be used beyond current operating conditions
- \checkmark Fuel reliability shall be more proven
- ✓ Safety criteria have been changed

Fuel product is not allowed to be irradiated in a power plant (as a precursor)

- \checkmark Envelope use conditions
- \checkmark Operating domain not reachable by a power reactor
- \checkmark Reactor not existing

=> Need to support technical and safety assessment oriented **licensing file** (industrial partner often leader)

Knowledge valorization in simulation codes is a permanent driving force

What will be the nuclear fuel landscape after 2015?

Sected fuel product evolutions (trends)

- ✓ Doped UO₂ or UO₂ with high content of neutronic absorbers (Gd, Er...)
- ✓ MOX with high Pu content or UO₂ with high ²³⁵U enrichment (> 5%?)
- ✓ Innovative UO_2 or MOX fuel (geometry, microstructure)
- ✓ Triplet {fuel material, pellet geometry, clad material} optimization
- ✓ Etc... (specific needs)

Examples of expected issues for improving fuel reliability

Challenges

- ✓ Power ramps behavior
 - Protocol, successive ramps...
- ✓ Internal EOL pressure
 - FGs, He release

7/19

- \checkmark Run beyond cladding breach
 - FP release, U dissemination...
- ✓ Iodine behavior
 - Release, role for SCC
 - ☞ Chemistry, link with other FP...

Operational stake Power plant maneuverability

Fuel product life time

Plant operation and maintenance, wastes

Power plant flexibility, source term

Highly instrumented and automated test Devoted environment Phenomenology Stakes

- ✓ PCI limits (plant maneuverability, flexibility...)
- ✓ Kinetics effects Ultra-fast ramp (up to 1000 W/cm.min)
- ✓ FP influence on clad behavior (I...)
- ✓ Fuel microstructure evolution (cracks, swelling, FP distribution....)
- ✓ Specific fuel vendor/utility needs

Experimental requests from the scientific team

- ✓ Welcoming power ramp system (various protocols, successive tests...)
- ✓ Ramp campaign: rod conditioning in another irradiation device
- ✓ Qualified power increase linearity control (automated system coupled with SPND results...)
- ✓ On-line measurement (clad elongation, FGR, coolant activity...)
- \checkmark Reliable system
 - Thigh accuracy on LHGR target
 - Strong experimental feedback
 - Results feed PCI modeling

9/19

✓ PIE support

AREVA

CEA

CroOg-doped UOg fuel

Experimental requests - Example 2: Fission Gas Release

Stakes ſ٢

- ✓ Quantification of FGR margins versus limits
 - Release values + kinetics (Envelope power time histories, cycling...)
 - The release specific issue
 - Radioactive source term
- ✓ Reduction of uncertainties and margins (Tc, λ , LHGR...)
 - ☞ Non linear system: Slight Plin/T increase → Strong FGR increase
- ✓ Validation of advanced FG modeling

Experimental requests

- ✓ On-line FG measurement (gas sweeping) -> FP Laboratory
- \checkmark Development of innovative in-pile instrumentation required
 - ^C E.g. acoustic sensor (pressure + gas composition)
- ✓ Coupling with PIE thermal analyses

China, October 28-30, 2009

400

300

100

50

ê 250 È 200

Hosting experimental systems for fuel samples under development

The MADISON fuel experimental hosting system

Description

A loop device for irradiation of LWR fuel samples in normal conditions of power reactors

- In reflector
- On displacement system
- Heavy components in cubicle

Type of fuel sample

All type of LWR fuel samples

- PWR / BWR fuel samples
- UO2 fuels (up to 7% in U⁵)
- MOX fuels (up to 15% Pu/(U+Pu))
- Fresh or high BU fuels (120GWj/t)
- Instrumented (CT, LVDT...)

Carrying capacity

Flexible loop with a large carrying capacity

- 4 rods clad diameter $\leq 10 \text{ mm}$
- 3 rods clad diameter $\geq 10 \text{ mm}$
- Possible evolution 7 rods 200W/cm

Type of experiment

Characterization and qualification of fuel samples

- Fuel behaviour (FGR, µstructure evolution, corrosion...) vs BU and LHGR

- Long-term irradiations
- (fuel screening test or rod qualification)
- Re-irradiation before ramps

Design and manufacturing in collaboration with IFE-Halden

Thermal hydraulics/Chemistry

Representative of LWR power reactors

- PWR (155bars , 320 °C, 4 m/s)
- BWR (75 bars, T_{sat}, 1,8 m/s, low void fraction)
- Designed for 4 rods at 400 W/cm
- Standard chemistry (PWR /BWR)
- Specific chemistry (HWC,...)

LHGR control

Good homogeneity between any 2 identical fuel rods

- 3-5% max. heterogeneity (four fuel rods sample holder) for all type of fuels / Burn up
- Use of thin neutron screens
- Precise thermal balance

The ADELINE irradiation loop in the Jules Horowitz MTR: Testing a LWR fuel rod up to the limits with a high quality level experimental process

The LORELEI hosting system

b Objectives

 \checkmark Thermal-mechanical behaviour of one LWR rod

- ➢ Ballooning and clad burst (fuel relocation)
- Corrosion at high temperature
- Quenching and post-quench behaviour
- ✓ Radiological consequences : FP source term (with/without fuel re-irradiation)

Sechnical design

- Device equipped with dewatering and quenching systems (gas and water tanks)
- \checkmark Temperature controlled by displacement system
- ✓ Temperature distribution flattening : neutron screen (axial) and electrical heater (azimutal)
- ✓ Quick installation (for short lived FP measurement) on END benches (gamma scanning and X radiography)

œ

A JHR hosting system development plan accorded to users needs

Madison (LWR fuel)	Available at the start of operation
Adeline (LWR fuel)	Available at the start of operation
Lorelei (LWR fuel)	Studied and Licensed
Instrumented capsule (fuel)	To be developed later on
Severe accident testing system (LWR fuel)	To be developed later on
Mica (material)	Available at the start of operation
Calipso (material)	Studied and licensed
Corrosion (material)	To be developed later on
SFR fuel testing systems	To be developed later on
GFR fuel testing systems	To be developed later on

Solution Initial checks of the experimental loading status just before the first irradiation

- > Handling possible effects (transportation, insertion in the device)
- Precise positioning of instrumentation, sensors...

Adjustment of the experimental protocol after a short irradiation run

- ➤ Sample behavior
- ➢ Power tuning...

Son the spot monitoring of the sample status after a test on the close-by stand

located in the reactor pool

- Limited handlings to preserve the "as tested" sample geometry
- ➢ Geometrical changes after an off-normal transient
- Quantitative distribution of short half-life fission product...

Sequence Final NDE tests after irradiation sequence

Son unloaded sample

Non Destructive Examination Benches in JHR

IGORR 12 Conference, Beijing, P.R. of China, October 28-30, 2009

œ

Photonic and Neutron Imaging Systems

✤ Important work carried out on anticipation of users' needs

- ✓ As a key strategic input to steer priorities in hosting systems developments
- \checkmark As a key technical input for the development and the licensing
- ✓ Necessary and beneficial for Users in order to get results as soon as possible

♦ JHR offers a wide experimental domain

- A set of experimental hosting systems will be operational at the JHR operational starting
- ✓ Development of some other systems closely linked to needs

The JHR experimental capacity definition is also dependent from the existing Users community (JHR consortium, JHIP)

International scientists (young fellows and/or senior experts) are welcomed within the JHR team for building the future JHR community