

Some essential features of the TAPIRO Fast-Neutron Source Reactor located at ENEA-CR Casaccia (Rome)

R. Rosa, A. Santagata, M. Carta, O. Fiorani

ENEA^{*} – Via Anguillarese, 301 – 00123 Rome – Italy

* Italian National Agency for New Technologies, Energy and Soustainable Economic Development

- History
- Main Features
- Facility Schemes
- Neutron Data
- Recent Activities
- Incoming Modifications
- Planned Activities
- Conclusions

The Casaccia Research Center

October 28-30, 2009, Beijing, P.R.China

- Fast source reactor
- Based on the concept of AFSR (Argonne Fast Source Reactor - Idaho Falls)
- Designed by ENEA's staff
- Start-up: 1971
- First Activities: fast reactor shielding experiments biological effects of fast neutrons

CORE	Cylindrical: diameter 125.8	mm
	height 109.5 mr	n ($2/3$ fixed – $1/3$ mobile)
FUEL	Uranium-molybdenum alloy (98.5% U – 1.5% Mo)	
	Density:	18.5 g cm ⁻³
	Enrichment:	93.5% U ²³⁵
	Operative mass:	22107.42 g/U ²³⁵
CLADDING	Stainless steel: thick 0.5 mm	
REFLECTOR	Cylindrical Inner Reflector:	diameter 348 mm
	Outer Reflector:	diameter 800 mm
	Overall Height:	700 mm
	Material:	Copper
	Weight:	2600 kg

ENER

TAPIRO

COOLING	Forced He: 100 g/sec @ 7.5 ata		
SYSTEM	Heat Exchanger + Refrigerator		
	Inlet core temp: 35° C - Outlet 25° C		
BIOLOGICAL	Shape:	near spherical	
SHIELD	Thickness:	1.75 m	
	Material:	high density borate concrete	
	Density:	3.7 kg dm ⁻³	
IRRADIATION	3 channels at the reactor midplane		
CHANNELS	1 tangential (to the top edge of the core)		
THERMAL	Max Volume:	1.6 m3	
COLUMN	2 piercing channels		

ENER

TAPIRO

The Big Concrete Sphere

October 28–30, 2009, Beijing, P.R.China

TAPIRO: Horizontal Section

TAPIRO: Vertical Section

October 28–30, 2009, Beijing, P.R.China

12th IGORR 2009

ENEN

TAPIRO

Accessing the Thermal Column

October 28–30, 2009, Beijing, P.R.China

Schematic Horizontal Cut at Reactor Midplane

Reactor Component Distances from Core

Radial Channel R: 169 mm * R: 410 mm **Thermal Column** Distance

Vienna, 12-16 Oct. 2009 TM on Specific Applications of RR: Provision of Nuclear Data

ENEN

TAPIRO

Calculated Neutron Fluence Rate per Energy Groups

TAPIRO

October 28-30, 2009, Beijing, P.R.China

- Characterization of N-16 counters devoted to monitoring
- Neutron radiation damage on components for the electromagnetic calorimeter (ECAL CERN LHC- Project)
- BNCT and neutron radiation effects on cancerous cells

At full reactor power [5 kW]

- Core center
 - Total core integrated neutron source strength: 3×10¹⁴ n/s
 - Total neutron fluence rate: 4×10¹² n · cm⁻² · s⁻¹

 $8 \times 10^{11} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} > 1.35 \text{ MeV}$

- Entrance of the thermal column
 - Total neutron fluence rate: $1.5 \times 10^{10} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$

 $4 \times 10^7 \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} > 1.35 \text{ MeV}$

BNCT Thermal Column Modification

October 28–30, 2009, Beijing, P.R.China

Thermal Column Scheme for BNCT

October 28-30, 2009, Beijing, P.R.China

12th IGORR 2009

ENEN

TAPIRO

BNCT Shielding

TAPIRO

- Dismantling the BNCT Shielding and Thermal Column Internals
- Return to the Original Reflector
- Thermal Column Reshape
- Revision of the MCNP Model of the Reactor (Cooperation with La Sapienza University Rome)
- Experimental Assessment of the MCNP Neutron Fluence Estimations
- Single Crystal Diamond Detectors Test

- Chemical vapor deposited single crystal diamond in a p-type/intrinsic/metal/⁶Li layered structure
- First test in thermal field in TRIGA at 1 MW (10⁹ neutrons/cm²/s)
- Excellent linearity observed
- Test in fast field is required

M. Marinelli, E. Milani, G. Prestopino, A. Tucciarone, C. Verona-Rinati, M. Angelone, D. Lattanzi, M. Pillon, R. Rosa, E. Santoro - Synthetic single crystal diamond as a fission reactor neutron flux monitormg - **Applied Physics Letters 90**, 183509 (2007)

Single Crystal Diamond Detectors Test

Linearity 10 kW - 1 MW

Small Fission Chambers

Ref. #	Loading	Content [µg]
1880	U-235	10
1995	U-235	50
2019	U-238	132
1997	Pu-239	30
1998	Np-237	30

Wide Activation Foils Availability

- Different patterns of neutron field
 - investigations of selected phenomena radiation damage
- Static and dynamic regimes:
 - parametric studies on ADS prototypical fuel in thermal column, eventually with a converter zone.
- Steady conditions
 - influence of fuel/Pb ratio on neutronic behavior of fuel-lead matrices.
- Dynamic conditions
 - absolute reactivity measurement conditions relative to source-jerk techniques

ΓΑΡΙΡ

BLANKET EXPERIMENTS 1/2

- Benchmark for validate neutronic codes for systems with significant spectral changes within the core (HTGR and Fast Systems)
- Traverses in graphite and lead columns,
 - Possible removal of a sector of the outer copper for a very hard neutron spectrum.
 - graphite column where spectrum gradually softens up to thermal
 - lead column where the spectrum softens from hard to epithermal
- Different materials interposed (U-nat, Pb, Fe, etc.): spectrum transition conditions at interface points between regions with different compositions.
- Activation foils: threshold energies in the fast, intermediate and epithermal regions.
- Quantitative gamma spectrometry
- Fission Chambers based Techniques

Analogous experiments on TAPIRO performed in the early 70's:

- Studies of the propagation of neutrons along the axis of a large sodium tank inserted in place of the graphite column.
- Measurement campaign in collaboration with CEA Cadarache for the fast reactor program
- Similar purpose: testing the ability of neutronic codes to reproduce the measured quantities.
- The experimental data are now included in the NEA documentation (International Reactor Physics Experiment Evaluation Project -IRPhEP)

Main Targets of the Future Activities

- Enhance the Reactor Activity in connection with the new Italian Way towards NPP
- Cooperate with Universities and Research Centers for the next Generation of Nuclear Experts
- Outcomes of the present TM

Thank you for your attention!

October 28-30, 2009, Beijing, P.R.China