

Reactivity insertions for the Borax accident in ORPHEE research reactor

September 2010, 1Xth / IGORR

Yacine Chegrani*, Florence Gupta, Franck Bernard IRSN Plan of the Presentation

Introduction

- Context
- Safety demonstration provided by the utility

IRSN assessment work on RIA

- Validation process of IRSN-made ORPHEE model
- Reactivity insertions evaluation
- Discussion

Conclusions

Context of the study

Second decennial safety review of French reactor ORPHEE

- Open core, pool type reactor built in 1986 by CEA
 - ➢ Neutron source reactor, 14MW
 - 8 square subassemblies, plate type fuel, aluminum clad, 93%
 - >9 neutron beam channels
 - 2 reflectors (Beryllium / heavy water)
 - >2 cold sources, 1 hot source in the reflector

IRSN is the technical support to French public authorities

- Borax = severe reactivity insertion accident
 - Safety goal: Robustness of the containment building and pool
 - Safety assessment procedure includes:
 - Reactivity worth of initiating events
 - Thermal consequences on fuel plates
 - Pressure load on the reactor structures

IRSN

Layout of the core and subassemblies

Safety demonstration for ORPHEE regarding RIA

Two main identified initiating events

- - > No possible ejection (downward flow)
 - Transient protected by scram thresholds and feedback
- Experimental equipment failure
 instantaneous
 insertion
 - Flooding of channels and probes by heavy water: reference case
 - \rightarrow Less leakage in high flux area
 - Disappearance of channels structure: sensitivity case
 - \rightarrow Less capture in high flux area

Evaluation of the consequences

- Reactor period
 - Higher than the experimental period for explosive borax (SPERT threshold at 4ms)

IRSE

- Innovative best-estimated thermal-hydraulic simulation
 - Melting temperature of aluminum not reached

Instantaneous reactivity insertions

Equipment	Reactivity worth in \$	
Flooding of Cold Source 1	0.21	
Flooding of Cold Source 2	0.19	
Vaporisation of H2 in Cold Source 1	0.17	
Vaporisation of H2 in Cold Source 2	0.11	
Flooding of Hot Source	0.20	
Flooding of light pipes	0.12	
Flooding of 9 channels	0.45	
Total of flooding and vaporisation effects	1.46 (reference)	
Structure disappearance of 9 channels	1.22	
Total of flooding and structure effects	2.90 (sensitivity)	

Safety demonstration analysis by IRSN

Equipment	Reactivity worth in \$	
Flooding of Cold Source 1s	0.21	
Flooding of Cold Source 2	0.19	
Vaporisation of H2 in Cold Source 1	0.17	
Vaporisation of H2 in Cold Source 2	0.11	
Flooding of Hot Source	0.20	
Flooding of light pipes	pipes 0.12	
looding of 9 channels 0.45		
Total of flooding and vaporisation effects	1.46 (reference)	
Structure disappearance of 9 channels 1.22		
Total of flooding and structure effects	2.90 (sensitivity)	

Lines in green have been measured during start-up

- Enough confidence in these values
- Lines in red have only been calculated in 1974
 - Diffusion calculations with TRIDENT code
 - → Worth making new calculations

Monte Carlo code MORET.5A1

Developed for criticality studies by IRSN

- Continuous energy cross sections
- Geometrical model uses 3D basic closed shapes in networks
- Single geometrical modules can be called several times in the geometry
- Integration of an estimation of kinetic parameters

Validation procedure set up for this study

- Comparison between MORET5 calculations and available reference calculated data extracted from the safety report
 - several levels of geometry simplification
- Comparison with identical model in MCNP

Kinetic parameters calculation

Reliable experimental values, used as complementary indicator

Validation against the simplified model from design calculations

- Experimental equipment not simulated
- Two distributions of boron are applied

	No boron (MORET/MCNP/TRIDENT)	Homogeneous (MORET/MCNP/TRIDENT)
Control fork worth in \$	40 / 40 / 46	38 / 39 / 42
Critical Height in cm (exp = 58.6 cm)	27 / - / -	50 / 50 / 47
Bcalc/Bexp	0.9 / - / -	0.9 / - / 1
Lcalc/Lexp	1.8 / - / -	1.7 / - / 4.5

Good general agreement

Validation against the available experimental data

Heterogeneous distribution of boron, as it is during operation

	Heterogeneous (MORET)
Control fork worth in \$	37
Critical Height in cm (exp = 58.6 cm)	58
Bcalc/Bexp	0.9
Lcalc/Lexp	1.8

Better agreement

- Addition of experimental equipment improves L calculations
 - Dependent on the quantity of heavy water in high flux areas

IRS

Calculations of reactivity insertions

Addition of 9 neutron beam channels

- Equivalent volume at mid-plan
- Precise description of each channel

Discussions

CEA provided new results obtained with TRIPOLI 4 (Monte Carlo)

- Validation against the measured cold source worth
- 9 Channels reactivity worth evaluation (precise description)

	Reactivity in \$ (CEA)	Reactivity in \$ (IRSN)
Flooding	1.7	2.1
Structure	1.6	0.7

Discrepancies have been addressed

- Flooding: difference in heavy water reflector purity
- Structure: difference in aluminum thickness

Conclusions

Fauinment	Safety report	Up-to-date
	calculations (80's)	calculations
Flooding of Cold Source 1	0.21	0.25
Flooding of Cold Source 2	0.19	0.15
Vaporisation of H2 in Cold Source 1	0.17	0.12
Vaporisation of H2 in Cold Source 2	0.11	0.11
Flooding of 9 channels	0.45	1.65
Total of flooding and vaporisation effects	1.46	2.66
Structure disappearance of 9 channels	1.22	1.62
Total of flooding and structure effects	2.9	4.3

- These new values pull the reactor period closer to the experimental threshold
- Safety report values will be updated
 - 2.9 \$ will become the reference case, and no sensitivity case will be considered
- Periodic examinations and replacement schedule of the neutron beams will be modified and tightened to reduce the risk of simultaneous failure

Thank you for your attention