

CARMEN: an experimental configuration in the MINERVE critical facility for the qualification of neutron cross sections in epithermal spectrum

Jacques DI SALVO

jacques.di-salvo@cea.fr

Muriel ANTONY

muriel.antony@cea.fr

CEA Cadarache, France

Outline

- 1. Introduction
- 2. The MINERVE facility
- 3. Oscillation technique of measurement
- 4. OSMOSE and OCEAN programs
- 5. Conception of the CARMEN lattice
 - Main characteristics of the CARMEN configuration
 - Estimation of experimental signals
 - Optimization of the design
 - Mechanical design
- 6. Conclusion and perspectives

Introduction

To gain experimental data to under-moderated reactors, the different studies:

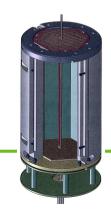
made

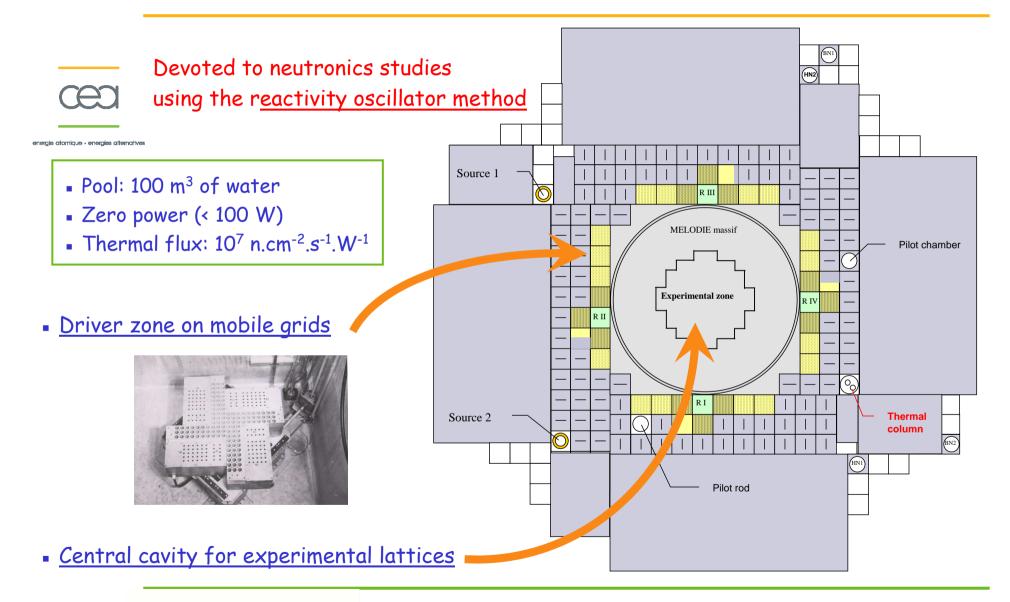
energie atomique - energies attemative

Qualification of neutronic parameters (ERASME program in the EOLE facility (1985))

Determination of capture rates (heavy nuclides, fission products) (ICARE irradiations in the MELUSINE facility (1986-1988))

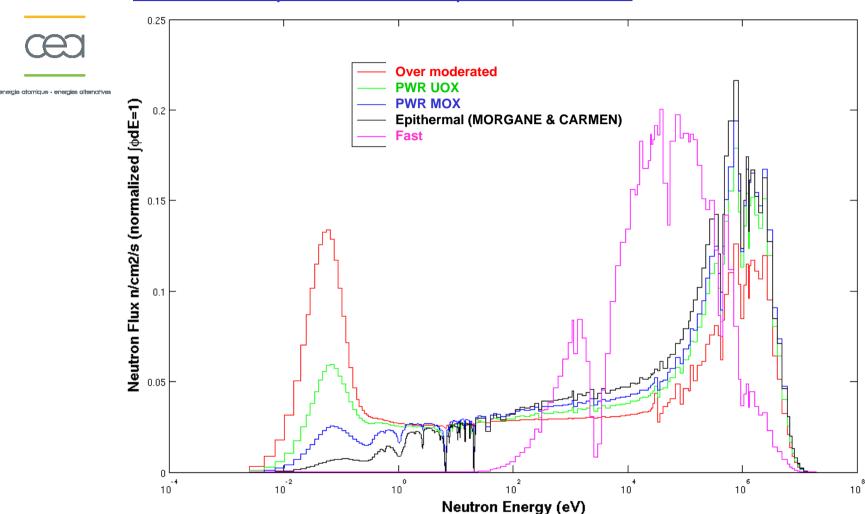
Measurement of the global capture of fission products (oscillation of spent fuels)


(MORGANE program in the MINERVE facility (1986))


Complementary results were foreseen:

Improvement of cross sections for heavy nuclides and new neutron absorbers (OSMOSE and OCEAN programs in the MINERVE facility)

<u>A new configuration has been designed:</u>
CARMEN (Core with <u>An epitheRMal nEutron moderatioN)</u>



The MINERVE facility


The MINERVE facility

Neutronics spectra in the experimental zone:

Oscillation technique of measurement

The OSMOSE and OCEAN programs (2005 - 2012)

Partners:

energie atomique - energies atternative

2012

To improve the knowledge on the absorption cross sections of:

OSMOSE: OScillation in Minerve of isOtopes in "Eupraxic" Spectra

Actinides: Th-232 U-233 Np-237 Pu-238 Am-241 Cm-244 U-234 Pu-239 Am-243 Cm-245

URE Pu-240 Pu-241

Pu-242

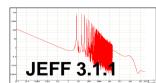
Am-241 Cm-244 Am-243 Cm-245

L = 10.35 cm

OCEAN: Oscillation in Core of SamplEs of Neutron Absorbers

Gd-155 Dv-160 Er-166 Hf-177 Eu-151 Absorbers: Gd-157 Hf-178 Eu-153 Dy-161 Er-167 Gd nat Dy-162 Er-168 Eu nati Hf-179 Dy-163 Hf-180 Er-170 Dy-164

 \emptyset = 1.06 cm

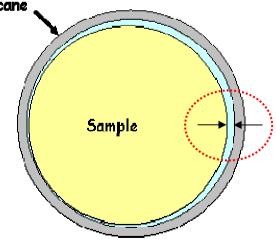


To be integrated into the library JEFF3.1.1

Since 2006 PWR UOX type spectrum (R1-UO2)

Measure in different neutron spectra for having a better decomposition in energy domains for the qualification of nuclear data

Epithermal (High Conversion LWR) type spectrum (CARMEN)


Characteristics of the CARMEN configuration

Main parameters required for the design:

- Epithermal spectrum with a moderation ratio Vm/Vf = 0.9
- A high content in plutonium (representative of under-moderated concepts)
- Pins already available in the facility (7% in Pu and 3.7% in U-235)
- Several safety criteria to be respected (importance of the experimental zone compared to the driver zone)
 Oscillation cane

Oscillation in a dry environment (to improve the reproducibility of the measurement)

Estimation of experimental signals

Experimental signals in R1-MOX lower than in R1-UO2

	R1-UO2	R1-MOX	CARMEN
	configuration	configuration	configuration
ΔЅнв-ні (pilot unit)	410 400 ± 1 000	119 600 ± 1 000	expected signal ~ 50 000 ± 1 000
Relative uncertainties	0.24%	0.84%	~ 2%

To optimize relative uncertainties for CARMEN lattice, experimental signals have to be as high as possible

Whatever the experimental lattice:

$$\Delta S = \alpha^{\text{calib}} \Delta \rho$$

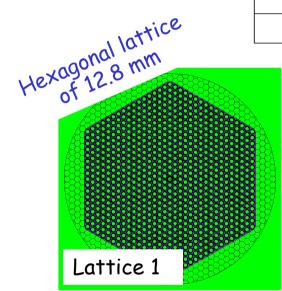
Estimation of experimental signals

$\alpha_{\textit{CARMEN}}^{\textit{calib}}$ can be estimated by a combination of:

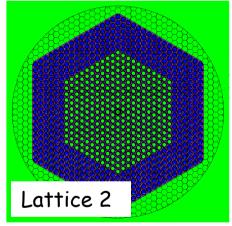
- 3D Monte-Carlo calculations (MCNP5 code)
- 2D deterministic calculation (APOLLO2.8 code)
- results of previous measurement (R1-UO2)

Checking of this method with the well known R1-MOX lattice

	Estimation	Measurement
α _{R1-MOX} (pilot unit)	815 ± 98	790 ± 15


Good agreement

Optimization of the design


Lattice number	Calibration factor $lpha_{\scriptscriptstyle CARMEN}^{\scriptscriptstyle calib}$	$\Delta S_{\scriptscriptstyle CARMEN}$ (pilot unit)
1	835 ± 89	114 178 ± 12 170
2	1063 ± 90	145 355 ± 12 307
3	1475 ± 103	201 692 ± 14 084

Homogeneous 816 MOX 7% fuel pins

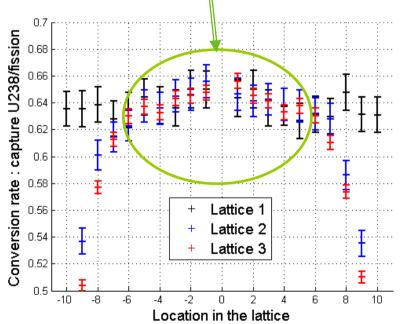
Overclad 11 mm of Øext

Lattice 3

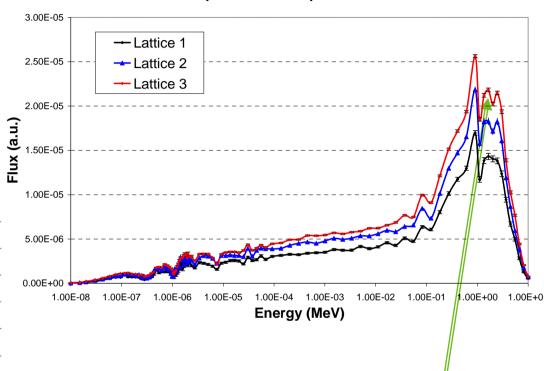
Heterogeneous
330 MOX 7% fuel pins
486 UO2 (3.7% U-235) fuel pins (buffer zone)

Overclad Øext=11 mm

UO2 drilled overclad Øext=10.2 mm

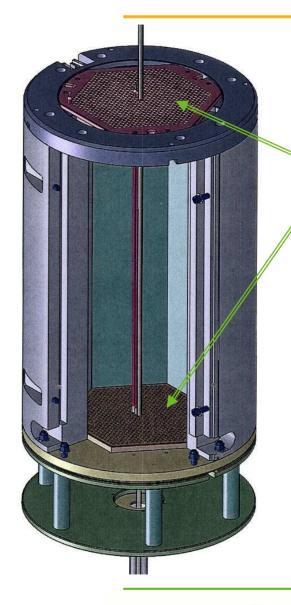


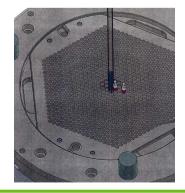
Optimization of the design



energie atomique - energies alternatives

• Same conversion ratio (F total around the oscillation device

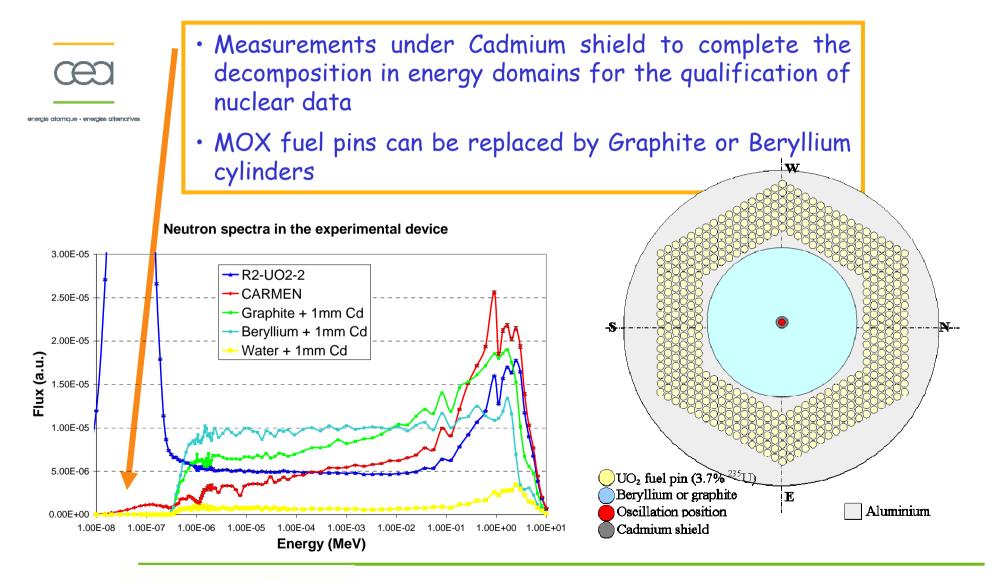

Neutron spectra in the experimental device


Small increase of the flux level (lattice 3)

Third lattice will provide better results

Mechanical design

- dedicated grid in an aluminum cask (versatility)
- Thick grid to drive the pins under 2 m of water
- Biological protection =
- Dedicated device for extracting samples from the top of the pool


Conclusion and perspectives

energie atomique - energies alternatives

- Neutronic conception achieved
- Mechanical building in progress
- Reduction of experimental uncertainties
- New calibration samples
- · Oscillations in CARMEN lattice should start in 2012
- ⇒ Improvements of nuclear data used for the JEFF3 library

Conclusion and perspectives

energie atomique - energies alternatives

Estimation of experimental signals

A reactivity effect introduced by a sample is exactly compensated by an automatic pilot rod, made of overlapping cadmium sectors:

$$\Delta \rho = \frac{\Delta N_{Cd} \int \sigma_{Cd}(E) \Phi(E) \Phi^*(E) dE}{I_f}$$

$$\Delta N_{Cd} = c \Delta S$$

$$\Rightarrow \Delta S = \frac{1}{c} \frac{I_f}{\int \sigma_{Cd}(E) \Phi(E) \Phi^*(E) dE} \Delta \rho$$
Eq. 1

As the proportionality factor c depends only of the acquisition system, Eq 1 is rewritten for each core configuration:

$$\Delta S_{C} = \frac{\left(\int \sigma_{Cd}(E)\Phi(E)\Phi^{*}(E)dE\right)_{R}}{\left(\int \sigma_{Cd}(E)\Phi(E)\Phi^{*}(E)dE\right)_{C}} \frac{\Delta \rho_{C}}{\Delta \rho_{R}} \Delta S_{R}$$
 Eq. 2

The integrals can be simplified:

the capture cross section of cadmium is essentially thermal, and by assuming the same spectral variations for both the adjoin and direct neutron fluxes:

$$\Delta S_C = \frac{\left(\Phi_{th}^2\right)_R}{\left(\Phi_{th}^2\right)_C} \frac{\Delta \rho_C}{\Delta \rho_R} \Delta S_R$$
 Eq. 3

The experimental signals in each configurations can be related to the reactivity effects calculated from 2D deterministic calculations though the same calibration process: