Status of Cold Neutron Research Facility Installation In HANARO

Sept. 22, 2010 at IGORR 2010

In-Cheol LIM Korea Atomic Energy Research Institute iclim@kaeri.re.kr

CONTENTS

Introduction to HANARO

Cold Neutron Research Facility Installation Project

Status of Beam Instrument Installation

Cold Neutron Flux Measurement Test Results

Remarks

Introduction to HANARO

Korea Atomic Energy Research Institute

(3)

HANARO Complex in KAERI

HANARO Reactor

High-flux Advanced Neutron Application ReactOr

Multi-purpose Research Reactor

http://www.kaeri.re.kr

Reactor Pools

Mission of HANARO

Research and Development 7

Chronology

- 1985 JAN <u>Start of HANARO Project</u>
- 1989 JAN Start of HANARO Construction
- 1993 AUG Installation of HANARO Reactor Structure
- 1995 FEB Fuel Loading and Achievement of Initial Criticality
- 1996 JAN 15MW Power Operation
- 1999 DEC 22MW Power Operation
- 2004 NOV <u>30MW (Design Power) Power Operation started</u>
- 2005 MAR First Loading of HANARO Fuel Made by KAERI
- 2006 APR Start of Cold Neutron Laboratory Construction (Completed in May 2008)
- 2006 JUL Start of Fuel Test Loop Installation (Completed in Feb. 2008)
- 2008 MAY Start of Cold Neutron Source System Installation
- 2009 SEP 3 First Generation of Cold Neutron

HANARO, Past and Present

Reactor Structure and Characteristics

Primary Cooling System

Reactor Hall, 2010

http://www.kaeri.re.kr

IGORR 2010

Status of Experimental Facilities

Installed IR1: Fuel Test Loop CT, IR2: Capsule Irradiation& RI Production OR : Capsule Irradiation & RI Production IP : RI Production HTS : Hydraulic Transfer System for RI Production PTS : Pneumatic Transfer System for Neutron activation Analysis NTD : Neutron Transmutation Doping of Silicon CNS : Cold Source Installation

Horizontal Tubes

Installed

- ST2 : High Resolution Powder Diffractometer, Four Circle Diffractometer
- **NR** : Neutron Radiography Facility
- **CN** : Cold Neutron Guide
- IR : Ex-core Neutron-irradiation Facility for BNCT & DNR
- ST1 : PGAA and RSI
- ST3 : High Intensity Powder Diffractometer

Under-development

ST3 : Bio-diffractometer ST4 : Triple Axis Spectrometer

Reactor Operation Record

Regional Cooperation for Neutron Science

Cold Neutron Research Facility Installation Project

Cold Neutron Research Facility

http://www.kaeri.re.kr

IGORR 2010

View of Cold Neutron Research Facility

Construction of Cold Neutron Laboratory(04.1-08.11)

http://www.kaeri.re.kr

Installation of CNS for the Operating HANARO

Neutron Guide Installation

Neutron Guide Installation(2)

Strategy

Combination of imported parts and local fabrication

Local Fabrication

Fabrication : Super-mirror guides(M=2, >150 m) with different shape 30m Ni guide for two SANS as collimator 10m super-mirror guide as beam flight path for Hr-SANS,

Bio-REF

Coating : A sputtering machine was developed. super-miror(M=2) has minimum reflectivity of 88 percent.

Cooperation

- MTF(consultation) & SwissNeutronics(Supply of front guides)
- 😝 Foreign experience (ILL, HMI, PSI)

Neutron Guide Installation(3)

Guide (dimension)		incline angle	Curvature	Length of curved part	Line of sight	Instrument
CG1 (20x150mm)		+3.04	400m □	26m	8m	(Mirror-Test) (V-REF)
CG2 (50x150mm)	CG2A (50 x 50mm)	+2.03	800m 🗆	24m	17.9m	(40M-SANS)
	CG2B (50 x 95mm)		350m⊡	26.3m	11.8m	***
CG3 (30x150mm)		+0.54	2500m□	25.6m	24.5m	(DC-TOF)
CG4 (50x150mm)	CG4A (50x50mm)	-0.93	2500m□	32m	31.6m	***
	CG4B (50x95mm)		600m 🗆	16m	15.5m	(Hr-SANS) (Bio-REF) (18M-SANS)
CG5 (50x150mm)	CG5A (50x150mm)	-2.50	1500m□	26m	24.5m	(Cold-TAS)

Cold Neutron Instrument Arrangement

Cold Neutron Instrument Availability

To be available from Nov. 2010

e 40m-SANS, 18m-SANS

To be available from 2nd half of 2011

😌 REF-V, Bio-REF, HR-SANS

Others from CNRF Projects

Cold TAS : First half of 2012

DC-TOF : Depending on the availability of He-3

	specifications	40M-SANS	18M-SANS
JEL: CA	guide length	20 m	9 m
	detector	ORDELA 21000N 2D-PSD (100 x 100 cm)	ORDELA 2660N 2D-PSD (64.5 x 64.5 cm)
	Monochromator	NVS	NVS
	Q-range(/)	0.0015(0.0008) ~ 1.0	0.002 ~ 1.0
	Neutron polarizer	YES	YES
	scale	1 ~ 400 nm	1 ~ 150 nm
Sample Environments Available in	Nov. 2010		X

Automatic Sample Exchanger in Room Temperature Circulation Bath (Temperature Control -25°C/90°C)

http://www.kaeri.re.kr

REF-V

Rx REF REF-V (2006/6 User Open)

CN REF-V (2010/4 relocation)

Instrument Characteristics

Part	
Monochromator Wavelength Wavelength Resolution Filter system Neutron Flux at	Vertical focusing PG(002) 4.75 \Box , 2 θ_{M} =90° $\Delta\lambda/\lambda < 1.0\%$ LN ₂ , Cooled Be ~ 3.5 x 10 ⁶ n/cm ² /sec
Single detector	He ³ 6 atm.
1-D PSD (plan)	8 x 12 cm, efficiency 90% at 4⊡
Polarizer, Analyzer	Fe/Si super mirror(m=3)
Spin flipper	Mezei type, FR=>0.98
Polarization Efficiency	P =>0.9
Q region	0.003 ~ 0.4 □ ⁻¹
Min. reflectivity	10 ⁻⁸

Sample Environment Facility

High Temp. Vacuum Chamber : ~650 K Low Temp. CCR : 10 K < Magnetic Field : Max. 0.8 T, Electromagnet Max. 500G, Helmhlotz Coil Cryo-Furnace : Plan

http://www.kaeri.re.kr

Bio-REF

Beam Flight Path & Sample Stage

* Applications in Nanotechnology & Biotechnology

- Nano-structured polymer thin films
- Polymer/metal nanostructures
- Bio mimetic materials • Langmuir monolayer characterization.

• Wetting transition on water surface

• Protein (DNA) adsorption in solution.

- Nano-porous materials characterization Poly-electrolytes at the air/water interface
 - Thin Films at high pressure •Bio mimetic materials

IGORR 2010

28

Bio-membranes Magnetic multilayer Enzyme, proteins http://www.kaeri.re.kr

Polymer Brush

Adhesion Wetting/de-wetting

Monochromator-to- sample distance	2 m	
Sample-to-detector distance	2 m	
Sample Area	500 mm ²	
# of monochromators	1 Set (4 ea)	
Filter	Beryllium(Cooled)	
Q _z range (Liquid) (Solid)	0.002 - 0.6 Å ⁻¹ 0.002 - 0.25 Å ⁻¹	
Wavelength	4.75 Å	
Measurements	Solid/Liquid Air/Liquid Air/Solid	
Minimum reflectivity	1 X 10 ⁻⁸	
Flux	8.0 X 10 ⁶ n/cm ² /sec	
Detector (Liquid) (Solid)	2D PSD Point type	
Sample environments	Temp, Press Cell Liquid Cell, LB	
Strategies	Under construction	

HR-SANS (KIST)

Cold Neutron Triple-Axis Spectrometer

Guide shield and monochromator installed in Aug. 2009

Shield performance test in Dec. 2009

Guide Hall as of Sept. 15, 2010

New Project for Cold Neutron Activation Station(CONAS)

(April 2010~April 2012)

CN-PGAA (CN-Prompt Gamma Activation Analysis) and **CN-NDP (Neutron-induced charged particle Depth Profiling)**

Neutron Flux Measurement

Neutron Flux Measurement Results (Interim Report)

Position $\overline{\lambda}[\overset{\circ}{A}]$ Thermal flue	ux Real flux 9 8.08E+08
	9 8.08E+08
CG1 4.48 2.01E+0	
CG2A 4.54 * 5.82E+09	2 .31E+09
CG3 3.87 * 6.74E+09	9 3.14E+09
CG4B 4.83 * 7.71E+09	2 .87E+09
CG5 4.21 * 8.16E+09	9 3.49E+09
BIO-REF 4.90 ¹ 2.79E+09	9 1.02E+09
DC-TOF 4.16 [*] 2.58E+09	9 1.12E+09
REF-V 4.57 [*] 1.49E+09	9 5.87E+08
HR-SANS 4.90 ¹ 3.57E+09	9 1.31E+09
Cold-TAS(#1) 4.03 ⁺ 5.37E+09	2 .40E+09
Cold-TAS(#2) 4.03 ⁺ 3.58E+09	9 1.60E+09
18M-SANS 4.90 ¹ 4.96E+08	B 1.82E+08
40M-SANS 4.97 ² 7.76E+07	7 2.81E+07

¹ Assumed value, ² Iterated value using spectrum measurement

* Calculation from McStas simulation + Calculation from VITESS simulation

DC-TOF Neutron Spectrum

•Measurement results showed more cold neutrons than the Monte-

Carlo calculation.

•The measurement was made in vacuum condition.

40M SANS Neutron Spectrum

http://www.kaeri.re.kr

IGORR 2010

Cold Neutron Gain @ CG2A Guide

- Gain is larger than 10 for over-5Å neutrons. (Target :10-20)

- The gain will be greater that 15 if the measurement is made in vacuum.

HANARO Symposium 2010 to celebrate the inauguration of CNRF Daejeon, Rep. of Korea Nov. 1-2, 2010

http://hanarosymposium.kaeri.re.kr

Embedded Meetings

- IAC(Int. Advisory Committee) meeting
- IAEA meeting on RR coalitions and user's network (NB in East Asia-pacific region)

X **Thank You!** KAERI Research Institute