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Abstract. Codes that use finite difference methods can have problems adapting different geometries when modelling a reactor. For example, the use of a Cartesian, triangular or hexagonal geometry can find serious difficulties when representing cylindrical boundaries because their elements are conditioned by the coordinate system. 

The finite element method, originated in the structural calculation, is a very useful tool for modelling complicate geometries having independence from any coordinate system.  
This method is used to represent the spatial parameters with polynomial approximation of higher order for three dimensional elements with a triangular, quadrilateral or hexagonal section. 

The code used for high order finite element calculation is DELFIN [2]. For comparison of calculation results a set of experimental benchmarks performed at the Brazilian reactor IPEN/MB-01 was employed. These benchmark experiments consist of 56 critical configurations and measurements of power distribution, temperature coefficient and kinetic parameters in another configuration. Experimental values were provided by the Energetic and Nuclear Research Institute (IPEN) of Brazil under the frame or the Nuclear Energy Argentine Brazilian Agreement (COBEN) [3].

A high order representation of reactor IPEN/MB-01 was employed in DELFIN to calculate reactivity, spatial power distribution and kinetic parameters and to compare results with results obtained by experiments, probabilistic (MCNP) and diffusion methods (PUMA [1]). 

Reactivity values, flux distribution and kinetic parameter values obtained with DELFIN reproduced very well the measured values with a lattice much less detailed than the finite difference lattice of common diffusion codes.

Also a comparison of  results obtained with high order hexagonal elements with those obtained in triangular o Cartesian geometry was performed. It can be shown that it is possible to use a simpler lattice representation to obtain an equivalent result to that obtained in a very detailed lattice in finite difference models.
1. Introduction

The Finite Element Method (FEM) was used with a great success in many fields of science and engineering and it was adapted to be employed also in nuclear reactor calculation. But in this case the elements simulating a partial volume of the reactor must be equivalent to the represented part of the reactor in such a way that these two conditions are accomplished:
a) Right evaluation of mean fluxes and reaction rates within the volume of the element.
b) Right evaluation of the mean fluxes and the mean currents at each boundary of the element.

By this reason the elements used in the FEM used in reactor calculation must work with mean fluxes and currents in volumes and boundary surfaces and not with parameter values in some super convergence points as they do in their applications for structural analysis.
2. Basic Equations

We will introduce here a very short explanation of the fundaments of the FEM applied to reactor calculation. More detail can be seen in reference [3].
In an element e the solution flux is expressed as a linear combination of base functions 
[image: image1.wmf])

(

r

X

e

p

such that:

[image: image2.wmf]å

=

=

F

N

p

e

p

e

p

e

r

X

r

1

)

(

)

(

a

  
[image: image3.wmf]e

r

Î


            




(1)
   We express fluxes as a function of mean values in volumes and surfaces and not as in terms of values in points. So the values 
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being 
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an internal volume or boundary surface of element e. N is the total number of internal volumes or external surfaces taken into account in the calculation.
We can now find the 
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   which is the inverse of the N × N matrix of mean values of base functions within each internal volume or external surface. Then:
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This type of element where the flux distribution is expressed as a function of its mean values in volumes and surfaces is treated in an isolated way in each lattice. They are coupled with the neighbor elements by means of mean currents and fluxes in the boundary and can be considered as "control volumes".
In this paper elements with only one internal volume will be treated (the whole element) and they will be three dimensional right bodies with a quadrangular or triangular base.

As explained in reference [3] for an element with NL boundaries and one internal volume the external (here N = NL + 1) net currents and the balance equations can be expressed as
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 is the number of boundaries of the element.

The index
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 matrix is the "escape matrix" that establish the relation or current continuity with the neighbour elements, 
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For example, for a equilateral triangle of side = 2 we have:
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and for a square of side = 2:
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3. Comparison of results with experimental measurements of the Brazilian IPEN/MB-01 reactor

A scheme of the reactor core can be seen in figure 1. It consists of a rectangular arrangement of 28 by 26 fuel rods of UO2 enriched at 4.3486% (in weight), and a stainless steel (SS-304) cladding, immersed in a dematerialized light water tank. The maximum allowed power is 100 Watt. The reactor control is performed by means of two rod banks diagonally opposed; the other two diagonal zones are occupied by the safety banks. Each control bank is composed by 12 absorber rods of Ag-In-Cd, and each safety bank by 12 absorber rods of B4C. 
The calculations were performed by the Reactor and Nuclear Power Plant Study Department (ERC) of the Argentine National Atomic Energy Commission (CNEA), and the Nuclear Engineering Center (CEN) of the Brazilian Institute of Nuclear and Energetic Research (IPEN-CNEN/SP) under the framework of the Bi-National Commission of Nuclear Energy (COBEN), created in Buenos Aires in February of 2008. 
The argentine side performed calculations with the deterministic models (HUEMUL [4]-PUMA [1], cell and reactor codes, respectively) and probabilistic methods (MCNP5 [6]) by modeling a great number of physical situations of the reactor, which have been previously studied and modeled by IPEN. 

For representation of the core with the high order FEM a lattice of one element for each fuel element or empty place and 10 axial segments was used. For PUMA (Finite Difference Method) each element was divided into 3 by 3 squares of 0.5×0.5 cm and 10 axial elements. 
The reflector was represented in PUMA with a very detailed mesh and in de FEM with a mesh similar to that used for the core.
[image: image26.emf]
FIG. 1. Detailed scheme of the core. White positions correspond to fuel rods that can be occupied by other elements such as burnable poison rods or no rod (only water). Red positions correspond to safety rods (water when withdrawn). Yellow and blue positions correspond to absorber elements of control banks BC1 and BC2 (water when withdrawn), respectively. Black positions are water; here acting as reflector.

3.1. Kinetic Parameters

The effective kinetics parameters are calculated by means of integral expressions in PUMA and DELFIN: 
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where:  
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In Table 1 we can see results for kinetic parameters. There are a very good coincidence between both models. 

The static reactivity is 223 pcm for PUMA and 423 pcm for DELFIN. The iteration time for a flux convergence of 5.0E-8 is 12 minutes for PUMA and 3 minutes for DELFIN. This difference is explained by the simpler representation in FEM (DELFIN) with a higher order approximation.

TABLE 1. Comparison between results obtained by means of HUEMUL - PUMA, with those obtained by IPEN for kinetic parameters (reference [4]).
	Parámetro cinético
	IPEN
(measured)
	CNEA

HUEMUL-PUMA
	CNEA

HUEMUL-DELFIN

	 nuclear
	--
	0.00688
	0.00688

	eff
	0.00750
	0.00741
	0.00742

	 [s]
	31.96
	30.72
	30.70


3.2. Power Distribution

The power distribution was measured through the fission rate evaluated in 107 fuel elements. The calculated values y measured values were normalized for these 107 fuel elements in such a way that the sum of total powers for all of them are equal. 
The FIGs 2 to 5 show experimental, PUMA and FEM (DELFIN) values for some of the measured elements. In FIGs 6 and 7 it can be seen the power distribution of same elements shown in FIG 5, but now calculated with MCNP [7]. 
In all figures the red "+" signs are values calculated by PUMA (Finite Difference Method) and the blue "x" are values calculated by DELFIN (High Order Finite Difference Method).

In nearly all cases there is a good coincidence between PUMA and DELFIN. In some cases the FEM has a better approach to the experimental results, but this is not a general rule.

It can be seen in FIGs 6 and 7 that the MONTECARLO method has a much better approximation to the experimental values.
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FIG.2. Measured and calculated power distribution for elements T15 and Y06.
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FIG.3. Measured and calculated power distribution for elements J18 and ab19.
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FIG.4. Measured and calculated power distribution for elements L13 and D13.
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FIG.5. Measured and calculated power distribution for elements Q11 and ab27.
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FIG.6. Measured and calculated power distribution for element ab27 with MCNP
[image: image37.png]POSITION Q11

—+— EXPERIMENTA
L

2,56,510,514,518,22,96,30,54, 88, %2,56,%50,5
Active Height (cm)





FIG.7. Measured and calculated power distribution for element Q11 with MCNP
4. Reactor modeling with super hexagons or triangular and quadrangular bodies.

In the next two sections we will show models of reactors with various types of high order elements
4.1. Model of a power reactor with hexagonal lattice.

In FIG. 9 we can see de FEM lattice for a power reactor and its radial reflector. Super hexagons and various types of high order triangular and quadrangular elements were used. 
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FIG.8. Model of one sixth of a power reactor with an hexagonal lattice using high order FEM.
The model used by PUMA is shown in FIG. 9. It consists of a triangular lattice with 24 triangles for each hexagon. 
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FIG. 9. Model of a power reactor with an hexagonal lattice using a triangular lattice in PUMA.
For this reactor a one year cycle was evaluated and for both models the same cycle duration was obtained. Also the reactivity values and the control rod position at each step were exactly de same. 
4.2. Model of ATUCHA I
For representation of the reactor of ATUCHA I in high order FEM the lattice shown in FIG. 9 was used [8]. The channel powers were compared with values obtained by PUMA with the Cartesian lattice shown in FIG. 11. In TABLE 2 results are shown for a case with seven empty central channels, whose location can be seen in FIG. 12. 
TABLE 2. Comparison DELFIN – PUMA - MCNP for seven empty central channels

	           K17   K19   J20    K21   J22    K23   H23   J24    K25   H25    J26    K27   G26   H27

MNCP     0.000 0.000 6.820 6.985 7.207 7.281 7.191 7.169 7.003 6.737 6.548 6.175 5.915 5.830

DELFIN   0.000 0.000 7.010 7.080 7.238 7.286 7.234 7.188 6.995 6.745 6.557 6.149 5.935 5.825

ERR(P)   0.00  0.00   5.87  3.88  1.59   0.55  0.55  0.01  –0.77 –0.53 –0.68 –1.36 –0.49 –0.96

ERR(D)   0.00  0.00   2.71  1.34  0.43   0.07  0.59  0.26  -0.11  0.12  0.14  -0.42  0.34 -0.09

          J28    K29   G28    H29   J30    K31   F29   G30    H31   J32    K33   F31   G32    H33

MNCP     5.503 4.966 4.801 4.588 4.143 3.471 3.540 3.458 3.133 2.617 1.947 2.208 2.017 1.645

DELFIN   5.489 4.917 4.803 4.574 4.111 3.435 3.542 3.434 3.108 2.598 1.919 2.201 2.000 1.629

ERR(P)   –1.10 –1.66 –1.05 –1.14 –1.25 -1.32 -0.67 –0.88 –0.77 –0.13  1.08  0.72  0.75  1.46

ERR(D)   -0.26 -1.00  0.04 -0.31 -0.78 -1.05  0.06 -0.70 -0.80 -0.73 -1.46 -0.32 -0.85 -0.98

Mean Quadratic Error (DELFIN) = 0.845            Mean Quadratic Error (PUMA) = 1.61

KEF (DELFIN)       1.00137                       KEF (PUMA)         1.00286




For the super hexagons different escape matrix were used for fast and thermal group in order to establish the right continuity of fluxes and currents in boundaries between fuel elements and empty channels or reflector boundary. When comparing differences with MNCP the FEM model has a better performance than the Finite Difference Method of PUMA. This fact is evident when evaluating de Mean Square Error for both models.  
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FIG. 10. Model in symmetry 6 of the ATUCHA I reactor with a core represented with an hexagonal lattice and the radial reflector by triangular and quadrangular elements using high order FEM.
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FIG. 11. Model of a ATUCHA I reactor with a Cartesian lattice in PUMA with 4 elements for each fuel element.
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FIG. 12. Channel denomination in ATUCHA I reactor.
4. Conclusions.

The high order Finite Element Method programmed in DELFIN was used to generate the lattice of the IPEN/MB-01 experimental facility with one element for each fuel rod. Results were compared with those obtained by PUMA with a net of nine elements for fuel rod. 

The values for fuel element axial power distribution have shown very good coincidence with those obtained by PUMA with a computing time four times smaller.

Besides, kinetic parameters were calculated obtaining results very similar to those evaluated by PUMA. 

Other examples of reactor representation were shown, one for a power reactor with a hexagonal lattice and another one for ATUCHA I. For this case the channel power distribution were compared with values calculated by PUMA and MCNP obtaining a very good coincidence even with seven central empty channels.
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