First Periodic Safety Review of the FRM II after 10 years of routine operation

The reactor block of the FRM II

Hot cell

Primary cell

Neutron guides

The reactor core section

Some key parameters of the FRM II

Reactor type	"Tank in pool reactor"
Thermal power	20 MW
Fuel elements in core	$1 \quad(53 \mathrm{~kg}, 8.1 \mathrm{~kg}$ Uranium $)$
Operation cycle	60 days @ $20 \mathrm{MW} \quad(1200 \mathrm{MWd})$
Coolant temperature, flow	$35^{\circ} \mathrm{C}-52^{\circ} \mathrm{C}, 300 \mathrm{~kg} / \mathrm{s}$
Coolant pressure	no high pressure, open pool
Moderator	Heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right)$
Max. undisturbed th. neutron flux	$8 \cdot 10^{14} \mathrm{n} /\left(\mathrm{s} \cdot \mathrm{cm}^{2}\right)$
Water volume in pool	$700 \mathrm{~m}^{3}$

PSR in German Nuclear Energy Act (,,Atomgesetz")

§ 19a Überprüfung, Bewertung und kontinuierliche Verbesserung kerntechnischer Anlagen
Fassung: 2010-12-08

(3) Wer eine sonstige kerntechnische Anlage nach § 2

Absatz 3a Nummer 1 betreibt, hat alle zehn Jahre eine Überprüfung und Bewertung der nuklearen Sicherheit der jeweiligen Anlage durchzuführen und die nukleare Sicherheit der Anlage kontinuierlich zu verbessern. Die Ergebnisse der Überprüfung und Bewertung sind der Aufsichtsbehörde vorzulegen.

Assessment of the nuclear safety every 10 years also for nuclear facilities besides NPPs

Operations License* of the FRM II

Im Abstand von etwa 10 Jahren, erstmals zehn Jahre nach Aufnahme des
Routinebetriebs, ist eine Periodische Sicherheitsüberprüfung (Sicherheitsstatusanalyse,
Probabilistische Sicherheitsanalyse, Sicherungsanalyse) in sinngemäßer Anwendung der entsprechenden Bund/Länder-Behördenleitfäden in der jeweils gültigen Fassung durchzufiuhren. Deren Ergebnisse sind dem StMLU und dem Sachverständigen gem. § 20 AtG vorzulegen.

02/03/2004 First criticality of FRM II
29/04/2005 Start of $2^{\text {nd }}$ reactor cycle and routine operation
\longrightarrow Deadline for submitting the PSR 01/05/2015

$\xrightarrow{\square}$
Guidelines for NPPs have to used

Guidelines of the federal ministry („Leitfäden")

RS-Handbuch
 Bekanntmachung der Leitfäden zur Durchführung von Periodischen Sicherheitsüberprüfungen (PSÜ) für Kernkraftwerke in der Bundesrepublik Deutschland
 vom 18. August 1997 (BAnz. 1997, Nr. 232a)

Guidelines of the federal ministry („Leitfäden")

PERIODISCHE SICHERHEITSÜBERPRÜFUNG FÜR KERNKRAFTWERKE (PSÜ)

TEILBEREICHE Area	Sicherheitsstatusanalyse		Probabilistische Sicherheitsanalyse (PSA)	Sicherung
VORGABEN Guidelines	LeitfadenSicherheitsstatusanalyse		Leitfaden Probabilistische Sicherheitsanalyse	Leitfaden Deterministische Sicherheitsanalyse
Abstimmung der Vorgehensweise zur PSÜ zwischen Genehmigungsinhaber und Aufsichtsbehörde				
VORGEHEN DES GENEHMIGUNGSINHABERS	Aktuelle Anlagenbeschreibung			
	Überprüfung der Sicherheitseinrichtungen der Anlage nach den Anforderungen und Vorgaben des Schutzzielkonzepts	Darlegung der Be triebsführung und Auswertung der Betriebserfahrung	Überprüfung der Ausgewogenheit des Sicherheitskonzeptes und Ermittlung der Summenhäufigkeit nicht beherrschter Anlagenzustände mittels probabilistischer Methoden Bericht: PSA	Bericht: Deterministische Sicherungsanalyse
	Bericht eterministische schutzzielorientierte Uberprưưng	Bericht Betriebsführung und Betriebserfahrung		
	Bericht: Abschließende Einschätzung des Sicherheitsstatus unter Einbeziehung der Einzelergebnisse der Teilbereiche der PSU			
VORGEHEN DER AUFSICHTS- BEHÖRDE Regulator	Schutzzielorientierte Beurteilung ggf. unter Zuziehung von Sachverständigen		Beurteilung ggf. unter Zuziehung von Sachverständiğen	Beurteilung ggf. unter Zuziehung von Sachverständigen
	Gesamtbewertung durch die Aufsichtsbehörde, behördliche Maßnahmen und Veranlassungen			

Guidelines of the federal ministry („Leitfäden")

Structure of the PSR

- Volume I: Introduction and summary
- Volume II: Description of the facility and its systems
- Volume III: Deterministic safety status analysis
- Report on the review of safety functions (DBA)
- Report on rare events (BDBA) and emergency measures
- Report on operational experience
- Volume IV: Probabilistic safety analysis
- Volume V: Deterministic security analysis

Volume I - Introduction and summary

II. Inhaltsverzeichnis

1. Grundlagen 4
2. Aufbau der PSU 7
2.1 Band I - Überblick und Zusammenfassung 7
2.2 Band II - Anlagenbeschreibung 7
2.3 Band III - Deterministische Sicherheitsstatusanalyse 7
2.4 Band IV - Probabilistische Sicherheitsanalyse 7
2.5 Band V - Deterministische Sicherungsanalyse 8
3. Zusammenfassende Bewertung der Ergebnisse 9
4. Literaturverzeichnis 13

FRM II

Volume II - Description of the facility

Volume III - Safety status analysis (DBA)

Volume III - Safety status analysis (BDBA)
INHALTSVERZEICHNIS
0. REFERENZEN 6

1. EINLEITUNG8
2. SPEZIELLE, SEHR SELTENE EREIGNISSE 9
2.1. Flugzeugabsturz 9
2.2. Äußere Explosionsdruckwelle 10
2.3. ATWS 10
2.4. Ergänzende Betrachtungen zu sonstigen Ereignissen11
3. NOTFALLSCHUTZKONZEPT 12
3.1. Einleitung 12
3.2. Moderatorablass 13
3.3. Abschalten von Zu - und Abluft Kontrollbereich 14
3.4. Beckenwassernoteinspeisung / Kernnotentladung 16
3.5. Zuschalten der 400-V-Notversorgung 18
3.6. Auslegung der Notfallmaßnahmen gegen sehr seltene Ereignisse 19
3.7. Notfallübungen21
4. FAZIT. 22

Volume III - Safety status analysis (operat. experience)

II. Inhaltsverzeichnis

1. Einleitung
2. Darlegung der Betriebsführung
2.1 Betriebsorganisation
2.1.2 Organisationsaufbau
2.1.3 Personalbestand
2.1.4 Aufgabenverteilung
2.1.5 Qualitätssicherungskonzept
2.2 Anlagenbetrieb
2.2.1 Betriebsdiagramme
2.2.2 Verfügbarkeit der Anlage
2.2.3 AuBerplanmäBige Betriebsunterbrechungen
2.2.4 Reaktorschnellabschaltungen aus Leistungsbetrieb
2.2.5 Sicherheitstechnisch wichtige Vorkommnisse mit Einstufung INES 1
2.3 Fachkunde
2.3.1 Maßnahmen zum Fachkundeerhalt
2.3.2 Programme, Organisation und Ergebnisse der Schulungsmaßnahmen
2.3.3 Qualifizierung neuer Mitarbeiter
2.4 Instandhaltung
2.4.1 Beschreibung der Instandhaltungsstrategie
2.4.2 Instandhaltungsbedingte Nichtverfügbarkeit von Sicherheitseinrichtungen
2.4.3 Wesentliche Ergebnisse von Instandhaltungsmaßnahmen
2.5 Strahlenschutz
2.5.1 Dosisleistungsniveau in der Anlage
2.5.2 Aktivitätskonzentrationen in Kreisläufen und Raumluft
2.5.3 Strahlenexposition des Personals
2.5.4 Dokumentation
2.5.5 Abgabe radioaktiver Stoffe über Abluft und Abwasser
2.5.6 Radioaktive Abfälle
2.6 Eifahrungsrückfluss
2.6.1 Auswertung von Eifahrungen aus anderen Anlagen
2.6.2 Liste der durchgeführten MaBnahmen
2.7 Notfallschutzplanung
2.7.1 Beschreibung der Strategie
2.7.2 Krisenstab
2.7.3 Alarmordnung und NotfallmaBnahmen
3. Auswertung der sicherheitsrelevanten Betriebserfahrung 99
3.1 Ergebnisse aus wiederkehrenden Prüfungen 99
3.1.1 Druckproben des Primarkreises, des Moderatootanks und der Strahlrohre 100
3.1.2 Zerstörungsfreie Prüfungen des Primärkreises 100
3.1.3 Funktionsprüfungen wichtiger Sicherheitssysteme 101
3.2 Lastfälle und Lebensdauerbewertung 102
3.2.1 Betriebliche und störungsbedingte Lastfälle 103
3.2.2 Bestrahlungsprogramm für kernnahe Komponenten 104
3.2.3 Lebensdauerbewertung von Komponenten 105
3.3 Auswertung meldepflichtiger Ereignisse 105
4. Zusammenfassung 108
5. Literaturverzeichnis 109

FRM II
Forschungs-Neutronenquelle
Heinz Maier-Leibnitz

Volume IV - Probabilistic safety analysis

INHALTVERZEICHNIS		
0.	REFERENZEN	14
1.	EINFÜHRUNG UND ZIELSETZUNG	21
1.1.	Allgemeines	21
1.2.	Ziel der PSA	21
1.3.	Umfang der PSA	21
1.4.	Methodisches Vorgehen	22
1.4.1.	Methodischer Ansatz PSA der Stufe 1	22
1.4.2.	Methodischer Ansatz PSA der Stufe 2	22
1.5.	Struktur des Berichts	23
2.	ALLGEMEINE BESCHREIBUNG DER ANLAGE	24
2.1.	Anlagenspezifische Informationen	24
2.2.	Konzept und Auslegungsmerkmale	24
2.3.	Reaktor	25
2.4.	Abschaltung des Reaktors	26
2.5.	Kühlung	26
2.6.	Nachwärmeabfuhr	26
2.7.	Sicherheitseinschluss	28
2.8.	Elektrische Energieversorgung	29
2.9.	Leittechnik und Reaktorschutz	30
2.10.	Experimentiereinrichtungen	30
3.	PSA DER STUFE 1 FÜR DEN LEISTUNGS- UND NICHTLEISTUNGSBETRIEB	32
3.1.	PSA der Stufe 1 für den Leistungsbetrieb	32
3.1.1.	Auslösende Ereignisse	32
3.1.2.	Ereignisablaufanalysen	32
3.1.3.	Analysen zu Wirksamkeitsbedingungen	33
3.1.4.	Repräsentative Ereignisabläufe	35
3.1.5.	Häufigkeit auslösender Ereignisse	47
3.1.6.	Beschreibung der Ereignisabläufe	54
3.1.7.	Fehlerbaumanalysen	58
3.1.8.	Komponentenkenngrößen	65
3.1.9.	Personalhandlungen	69
3.1.10.	Gemeinsam verursachte Ausfälle (GVA)	70
3.1.11.	Ergebnisauswertung	72
3.2.	PSA der Stufe 1 für den Nichtleistungsbetrieb (Periodische Anlagenabschaltung)	74
3.2.1.	Auslösende Ereignisse	74

3.2.2.	Ereignisablaufanalysen	75
3.2.3.	Häufigkeit aus/ösender Ereignisse	76
3.2.4.	Beschreibung des Ereignisablaufs	76
3.2.5.	Fehlerbaumanalysen, Komponentenkenngrößen, Personalhandlungen und Gemeinsam verursachte Ausfälle (GVA)	77
3.2.6.	Ergebnisauswertung	78
3.3.	Einwirkungen von Innen	79
3.3.1.	Anlageninterne Brände	79
3.3.2.	Anlageninterne Überflutung	80
3.3.3.	Explosion	82
3.3.4.	Chemische Reaktionen	82
3.4.	Einwirkungen von Außen	82
3.4.1.	Flugzeugabsturz	82
3.4.2.	Explosionsdruckwelle	84
3.4.3.	Hochwasser	84
3.4.4.	Erdbeben	84
3.4.5.	Blitzschlag	99
3.4.6.	Externer Brand	99
3.4.7.	Extreme meteorologische Bedingungen (Sturm, Schnee, Regen)	99
3.5.	Gesamtergebnisse der PSA Stufe 1	100
4.	PSA DER STUFE 2 FÜR DEN LEISTUNGS- UND NICHTLEISTUNGSBETRIEB	106
4.1.	Kernschmelze	106
4.1.1.	Kernschmelzszenario	106
4.1.2.	Kühlung des geschmolzenen Kerns	106
4.1.3.	Dampfexplosion	107
4.2.	Sicherheitseinschluss	108
4.3 .	Quellterme	108
4.4.	Gesamtergebnisse der PSA Stufe 2	109
4.4.1.	Freisetzungskategorie 2	109
4.4.2.	Freisetzungskategorie 3	112
5.	ZUSAMMENFASSENDE BEWERTUNG DER ERGEBNISSE	115
5.1.	PSA der Stufe 1	115
5.2.	PSA der Stufe 2	116
5.3.	Ausgewogenheit des Sicherheitskonzepts	116
6.	ABBILDUNGEN UND TABELLEN	117
6.1.	Abbildungen	117
6.2.	Tabellen	124

Volume V - Deterministic security analysis

Submission of the PSR documents

PSR Results: Vol. III, Reports on DBA, BDBA, Op. Exp.

- The safety systems of the FRM II fulfill all requirements to cover the relevant design basis accidents (DBA)
- There are sufficient precautions for beyond design basis accidents (BDBA) like airplane crash or other extreme external hazards in place
- An ATWS scenario is not relevant for the FRM II due to its diverse and redundant shutdown systems
- The evaluation of the operational experience of one decade showed that the FRM II was operated safely with a high availability for its users and customers

PSR Results: Vol. IV, Report on PSA

- The results in a core damage frequency of $4.2 \cdot 10^{-6} /$ a calculated over all initiating events of the operational an non-operational state of the reactor
- The major contribution to this comes from the common cause failure of both natural convection flaps that have to open some hours after reactor shutdown and the additional failure of the restart of at least one pump of the primary or emergency cooling system.
- The PSA level 2 for the release of radioactive material to the environment results in a value
 between $5.3 \cdot 10^{-9} / a$ and $4.6 \cdot 10^{-10} / \mathrm{a}$

Summary

- The FRM II performed its first PSR after 10 years of routine operation.
- The PSR was done according to the German regulations for NPPs. Where necessary a grades approach was used.
- The documents were submitted in time to the regulator and its TSO.
- The PSR showed that the FRM II fulfills all relevant safety requirements.
- The evaluation of the documents and results by the TSO is still in progress.
- The final version of the PSR documents that will include the comments and requested changes of the TSO can be used as basis for the next PSR in the year 2025.

