

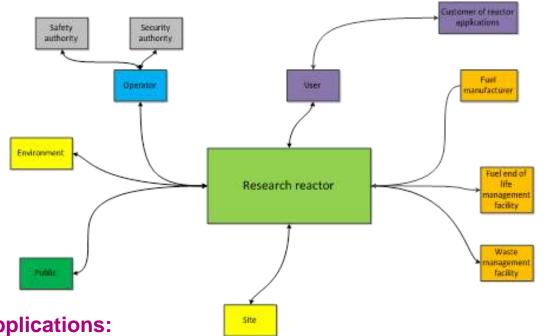
Nuclear Compact Reactors

CONTRIBUTIONS OF PREVIOUS PROJECTS TO THE DESIGN OF NEW RESEARCH REACTORS

Authors: C. PASCAL, P.MIGNONE, G.AIRIEAU, J.S.ZAMPA

ome ctors

IGORR Sydney - December 2017 p. 2/12


Nuclear Compact Reactors

Content

- ① New research reactor project requirements
- **2** Background information
- **3** Impact of new project requirements on design
- Design approach discussion
- **5** Concluding remarks

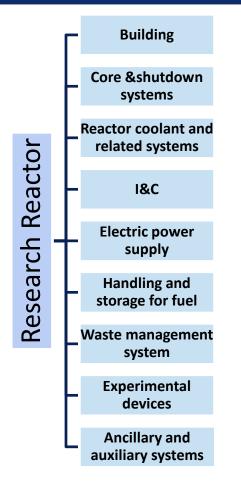
New research reactor projects requirements

Applications:

- Most frequent: training, radioisotope production, neutron activation analysis, neutron beam applications for science and industry, and neutron transmutation doping
- Material and fuel testing
- **Project specific:** Application performances and balance

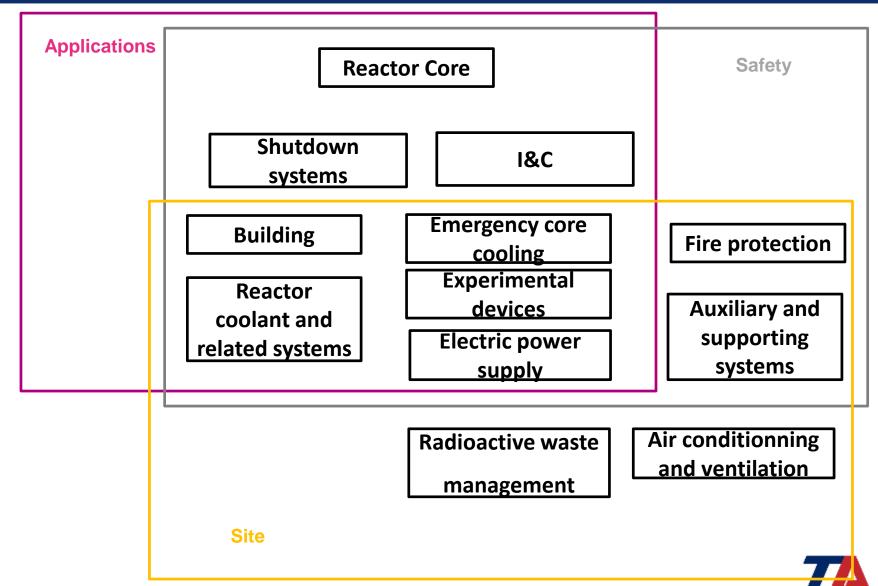
Site and environment

- Meteorological conditions
- Waste routes
- Isotope processing
- Integration within existing site


Safety

- **Evolution of IAEA safety** standards
- 35-S1 NS-R4 SSR-3
- 4th level of DiD: DEC, DEH
- Independence/safety groups
- Qualification of safety important items
- New national regulations

Background information



PBS item design includes:

- concept,
- functional sizing,
- components : specifics, COTS,
- Structural analysis
- Integration
- Control: automation and operator action

Impact on design

Technic Atome

Impact on design

- At reactor level
 - building layout, reactor architecture (open core/tank-in-pool, primary flow direction), core design, reactor power, pool sizing
 - Driving requirements
 - Implementation of defense in depth: DEC, DEH
 - Cooling autarchy
 - Key success factor: right design option and sizing adressing safety requirements and performances
 - Consequence: New requirements impacting this level jeopardize the reutilization of previous reactor design
- At PBS item level
 - proven design character of each SSC (i.e. maturity of the SSCs design)
 - capability to properly implement them

Design approach discussion 4 design strategies are considered

- 1. Propose an <u>existing design without any significant change</u> or a drastic limitation of the design changes
- 2. Start from an existing design and tailor it to fit the project requirements: so-called <u>Existing design adaptation</u>,
- 3. Perform a fit to purpose design through: a selection of a reference reactor type, a tailored system architecture and building layout to match project requirements a reactor architecture definition integrating a maximal number of SSCs with a proven design so-called <u>Built from proven design architectures and SSCs</u>
- 4. Starting from scratch: totally <u>new design</u>. Only way to meet very specific requirements Subsequent risk, cost , and schedule impact Extremely rare

Design approach discussion: : options 1 & 2

Design Strategy Option 1: Existing design without significant change

- Very rare
- Issue as regards regulatory and safety requirements: recent changes
- Similar applications: small differences only can be implemented

To become a viable option, specific agreement between projects would be required

Design Strategy Option 2: Existing design adaptation

Slight adaptation of an existing reactor overall design requires:

- Very limited adaptation of systems architecture
- Building design meeting up to date safety requirements
- Conformance of SSCs qualification/requirement
- Site requirements not challenging design of systems housed within nuclear island

Condition for success:

- Similar application requirements and layout and integration not challenged by external hazards
- Very recent new safety requirements (DiD and external hazards) already considered

Efficient when possible

Successfull implementation requires unlikely conjonction of conditions

Design approach discussion: : option 3

Built from proven design SSCs and architectures

- selection a reactor architecture compatible with applications
- new core design
- plant architecture
 - fitting with up to date defense in depth
 - integrating as far as possible already proven design SSCs,
- nuclear island building designed to cope with challenging hazards.
- Always possible
- Combines benefits of past and recent/ongoing project:
 - SSCs
 - Building design
 - Qualified safety related items
 - Meets performances and safety requirement at efficient cost and schedule

Good trade-off Always implementable

Illustration of implementation at TechnicAtome

Overall design and reactor architecture benefits from

- the JHR project, meeting up-to-date safety requirements
- but also all previous reactors' design even the older ones

since only the concepts are reused within an up-to-date overall architecture as regards defense in depth, meeting safety requirements

Core and experimental devices design benefits from

- Lessons learned from material testing, multipurpose and neutron beam reactors (e.g. OSIRIS, SILOE and ORPHEE),
- LEU silicide fuel qualification at fuel element level (OSIRIS, JHR) and fuel assembly
- Up-to-date design approaches and computer codes

Reactor systems benefit from combination of

- proven concepts from past projects
- up-to-date sizing using up-to-date tools
- qualified component from component database of the TechnicAtome PLM

As regards component qualification, the very stringent Cadarache site environmental conditions become an asset for future projects

Concluding remarks

- Contributions of previous projects and experience are key to the design of new research reactors.
- The recent evolution of safety requirements together with the specific utilization features raise challenges for the reutilization as a whole of pre-existing designs.
 - Actually, relevant contributions of past projects to design of new research reactor come from:
 - Any research reactor projects, for the reactor core, the fuel, the core support structures and the experimental devices,
 - Recent nuclear reactors projects meeting up-to-date safety requirement, for
 - other key safety SSCs
 - · decay heat removal means,
 - means of confinement,
 - and building providing protection against external hazards,
 - All recent and ongoing nuclear projects, for all other safety classified SSCs

