

Core Elements Improvements for Optimization of Radioisotopes Production in an MTR-type Core

T. Makmal^{1,2}, M. Alqahtani², A. Buijs², J. Luxat²

Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne, Israel
Engineering and physics department, McMaster University, Ontario, Canada

PART I: INTRODUCTION

- The primary purpose of Research Reactors is to provide a neutron source for research in natural sciences, industrial processing and nuclear medicine.
- The most common method for isotopes production is by the neutron activation process.
- Due to the cosine shape of the flux in every axis, the maximal flux length is located around the center of the active length of the Fuel Assembly (FA).
- This limited area of maximal flux makes the activation process of large or multiple samples less efficient.

PART II: THE OBJECTIVE OF THIS STUDY

- Analyzing the main components in isotope production process in order to optimize the production by uniform and flat thermal flux.
- Re-design components:

- Irradiation Position (IP) body material.
- FA linear fuel distribution loading.
- Carry out a production rate comparison between MNR FA to the modified FA.

- 3-D, Monta-Carlo Simulations of MTR fuel-type mini-core.
- The thermal flux, along the active length, of the inner cylinder was detected. The values were analysed and compared.

PART II: FLUX IMPROVEMENTS (1/4)

McMaster University W Nuclear Operations

PART II: FLUX IMPROVEMENTS (1/4)

Changes in the IP body material

McMaster

Nuclear Operations

• Five principal materials simulated to analyse the change in flux shape.

PART II: FLUX IMPROVEMENTS

Changes in the linear atom density

Card #	U ²³⁵ mass in each plate [gr]	Total U ²³⁵ mass in a FA [gr]	U ²³⁵ density in a plate [gU ²³⁵ /cc]	U density in a plate [gU/cc]	Thermal Conductivity [W*m/K]
1	14.0625	225	0.737	3.735	77.70
2	15.0000	240	0.786	3.984	66.39
3	15.9375	255	0.836	4.233	55.68
4	16.8750	270	0.885	4.482	45.81
5	17.8125	285	0.934	4.731	37.06
6	18.7500	300	0.983	4.980	29.81
7	19.6875	315	1.032	5.229	24.48
8	20.6250	330	1.081	5.478	21.60

• At very high loadings the aluminum ceases to play a significant role, and the thermal conductivity approaches that of the fuel (15_[W/mK]), which indicates stopping criteria for additional high density card.

PART II: FLUX IMPROVEMENTS

Changes in the linear atom density:

- Using the different loadings Cards, a new fuel (Case) was built.
- Each FA was split into seven sub segments (8.5714cm each).
- Eight different Cases were simulated. All analysed and compared.
- The most efficient cases, in terms of high and flat flux, were chosen.

Sub-segment	Fuel atom density [grU/cc]	Thermal Conductivity [w*m/K]	Fuel atom density [grU/cc]	Thermal Conductivity [w*m/K]
#	Case #4 (MNR standard FA)		Case #7	
1	3.735	77.70	4.731	37.06
2	3.735	77.70	4.233	55.68
3	3.735	77.70	3.984	66.39
4	3.735	77.70	3.735	77.70
5	3.735	77.70	3.984	66.39
6	3.735	77.70	4.233	55.68
7	3.735	77.70	4.731	37.06

PART II: FLUX IMPROVEMENTS

Changes in the linear atom density and the IP body material:

PART III: PRODUCTION RATE COMPARISON

PART IV: THERMAL-HYDRAULIC CALCULATION

• Safety analysis calculations for Onset Nucleate Boiling and Pump Failure show no significant difference comparing to MNR standard FA calculations values.

PART IV: <u>K_{EFF} AND BURNUP CALCULATIONS</u>

• For reliable running, each simulation done with 50000 particles, 5000 active and 250 inactive cycles.

McMaster Nuclear Operations

• The absolute error in the Keff was found to be <0.07mK and therefore neglected.

PART IV: SUMMARY AND CONCLUSIONS

- In this scoping study a new design of MTR FA analyse in order to optimize isotope production at MTR type RRs.
- Components impact:

- IP body material changes the flux amplitude.
- Linear fuel distribution changes the flux shape.
- In comparison a full cycle, by using the re-design models, the cycle length increases by 120% and the radioisotopes production increases by 230%
- Except LWT, no significant different found between the IP body materials, in terms of production rate and the K_{eff}.
- Thermal-Hydraulic calculations and a safety analysis for the selected cases shows safe operations comparing to an MNR safety analysis report.
- This new design can be cost effective in terms of radioisotopes production and fuel.

Questions?

THANK YOU!