

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

The new material irradiation infrastructure at the BR2 reactor

Copyright © 2017 SCK•CEN

The new material irradiation infrastructure at the BR2 reactor

Steven Van Dyck, Patrice Jacquet

svdyck@sckcen.be

Reactor core performance of BR2

- Design goal: thermal neutron flux up to 10¹⁵ n/cm²s
 - Achievement by
 - Compact core arrangement with central flux trap
 - Material choice: Be moderator and metallic uranium fuel
 - High overall core power (upgraded from 50 to 100MW in 1968)
 - 25MW additional cooling capacity for experiments
 - Achievable flux levels (at mid plane in vessel)
 - Thermal flux: 7 10¹³ n/cm²s to 10¹⁵ n/cm²s
 - Fast flux (E>0.1MeV): 1 10¹³ n/cm²s to 6 10¹⁴ n/cm²s
- Allowable heat flux in primary coolant
 - 470W/cm² for the driver fuel plates
 - Demineralised water
 - Pressure to 1.2MPa, temperature 35-50°C
 - 10m/s flow velocity on fuel plate
 - Up to 600W/cm² can be allowed in experiments

Spectral tailoring in BR2 experiments

Objective

- Simulation of fast reactor conditions
- Separation between transmutation and lattice damage
- Method
 - Selection of irradiation position in reflector or fuel element
 - Addition of absorbing materials

Reactor core geometry

Overview of typical irradiation positions

Channel type	thermal flux range (10 ¹⁴ n/cm ² s)	fast flux range (10 ¹⁴ n/cm ² s) (E>1MeV)	Gamma heating (W/g Al)	diameter (mm)	typical number available
F1	1 to 3.5	0.5 to 2.8	1.7 to 8.8	25.4	30
F2	up to 2.5	up to 2.5	up to 6.8	32	2*
S	1 to 3.5	0.1 to 0.7	0.9 to 2.3	84	24**
Central large channel H1	up to 10	up to 1.8	3	200	1***
Peripheral large channel Hi	3	1.3	0.1	200	4****
Peripheral small channel P	0.7 to 1.5	0.05 to 0.1	0.4 to 1	50	9

Flexible reactor configuration

- Combination of multiple experiments in core load
 - Position of fuel, control rods and experiments are optimised
 - Choice of type of fuel elements
 - Adapted reactor power and cycle length
- Reactor load is optimised for each operating cycle
 - 3D MCNP model with burn-up evolution of entire core
 - Detailed model of experiment if required
 - Verification by measurement before start
- BR2 reactor management is ISO 9001 certified (including irradiations)

Typical configuration variants in BR2

BR2 = Multipurpose Reactor

Mid-plane cross section of a typical BR2 core

New material irradiation devices

C. C.

Copyright © 2017 SCK•CEN

Material irradiation for selection and qualification

- New applications of nuclear energy
 - Issue: application target is beyond current database
 - Higher temperatures
 - Higher (fast neutron) fluence
 - Different environments
 - Materials: wide variation for screening
 - Stainless & high chromium steels: GEN 3&4
 - Ceramics & cermets: ATF claddings & fusion
 - Copper, tungsten, steel: fusion
 - Solutions
 - Provide rigs with high flexibility in irradiation conditions
 - Select high fast flux positions: ≥0.5 dpa / cycle
 - Provide cost effective solutions for irradiation of many samples

HTHF – High Temperature High Flux

Purpose of the device

- Specimens (not fuel) irradiation at
 - High temperature : 300 \rightarrow 1000 °C (measured and controlled)
 - High flux: in a VIn fuel element (dose up to 10 dpa)
 - Nuclear Heating from 8 up to 14 W/g
- Specimens:
 - Type: flat tensile, mini-Charpy & simple geometries (like cylinders)
 - Material: High temperature resistant: W, Mo, SiC, ... Fe (300 °C)
- No requirement to preheat specimens at irradiation temperature before the first neutron.
- Environment: gas (Helium) or vacuum

The High Temperature High Flux device

- Material irradiation for GEN 4/fusion conditions
 - High dose rate (>0.5 dpa per reactor cycle)
 - Stable irradiation temperature during irradiation
 - Low cost rig with flexible loading position in reactor
- Solution
 - Gas filled capsule inside 6 plate fuel element and electrical heating
 - Control of temperature by gas gap design and gas pressure
 - Miniature specimens
- Characteristics
 - Temperature 300-1000°C
 - Single use capsule
 - Up to 0.75 dpa per reactor cycle of 3 weeks
 - fluence 4.7 to 5.2E20 n/cm² (E>1MeV) in hottest channel

HTHF – Design concept

- 1 Graphite sheath
- 2 Graphite matrix for mini-Charpy
- 3 Graphite cover
- 4 Graphite pen
- 5 Graphite centering plug
- 6 Graphite matrix for flat tensile
- 7 Graphite cover

HTHF – Calculation results

Temperature profile +/- flat over predefined range. (+/- 1% at calculated pressure)

Measurements of temperature at max 4 levels.

Irradiation behavior

- Strong temperature dependence on nuclear heating
- Optimisation of temperature feedback on temperature control
- Strong gradient between W samples and C matrix

Optimised control: irradiation cycle 2

Irradiation conditions

- Fast flux at mid plane during first 2 cycles
 - 1,7 10¹⁴n/cm²s and 1,4 10¹⁴n/cm²s
- Accumulated damage after 2 cycles
 - 0,42dpa in W

HTHF Cycle 05/2017

Material irradiation in support of long term operation

- Irradiation induced ageing of reactor pressure vessel steels
 - Issue: current files from surveillance programmes insufficient for LTO
 - Insufficient material
 - Low lead factor
 - Challenge
 - Provide validated datasets compatible with existing surveillance programmes
 - Relevant dose levels for Long Term Operation
 - Sufficient volume/ numerous specimens
 - Representative and controlled temperature
 - Solution
 - Provide a rig with stable temperature control in low to moderate flux position (0.X dpa in one or 2 reactor cycles)
 - Validate data on standardised specimen type against surveillance data from plant
 - Generate new data beyond database on newly irradiated samples

The new RECALL device

- Requirement: material irradiation in typical LWR conditions
 - Loading of full size Charpy specimens (>10)
 - Stable irradiation temperature before, during & after irradiation (250-320°C)
 - Flux levels relevant for LWR plant life management: 0.05 to 0.15 dpa per reactor cycle of 3 weeks
- Solution
 - Reusable rig with flexible loading position in reactor
 - Short lead times
 - Limited impact on other experiments
 - Variable position in reactor yields wider range of dose rates
 - >16 Charpy specimens in flux range >85% maximum

RECALL rig concept

RECALL operation

- Pressurised water is injected at low temperature in IPS
 Saturation pressure set to stabilize irradiation temperature
- Preheating to irradiation temperature
 - Heating of samples before start of irradiation \succ
- Evacuation of nuclear heating by nucleate boiling
 - Stable irradiation temperature independent of heat flux
- Injection of cold water
 - Control of steam fraction and reactivity effect (void factor)

Temperature distribution

Steam fraction as function of cold water injection

1.00e-01
9.50e-02
9.00e-02
8.50e-02
8.00e-02
7.50e-02
7.00e-02
6.50e-02
6.00e-02
5.50e-02
5.00e-02
4.50e-02
4.00e-02
3.50e-02
3.00e-02
2.50e-02
2.00e-02
1.50e-02
1.00e-02
5.00e-03
0.00e+00

Expected fast flux distribution in needles & structure

Conclusions

- 2 new devices are presented for material irradiation
 - High fast flux device for multi-cycle dpa accumulation: HTHF
 - Low fast flux device for ageing studies with strict temperature control: RECALL

Utilisation of flexibility of reactor

- Selection of fuel element with similar heating over cycles: HTHF
- Creation of reflector position with desired fluence over 2 cycles and rotation at mid experiment: RECALL
- Cost effectiveness and short lead times
 - Generic design method and re-use of OPE: HTHF
 - Reloadable device in reactor pool or hot-cell: RECALL