

ROSATOM STATE CORPORATION ENTERPRISE

The 18th IGORR Conference 3-7 December 2017, The International Conference Centre, Darling Harbour, Sydney, Australia

Current and Prospective Tests in Reactor MIR.M1

Alexey IZHUTOV

INTRODUCTION General Technical Data of the MIR.M1

Parameter	Value			
Nominal thermal power, MW	100			
Maximal thermal neutron flux density in the loop channel, cm ⁻² ·s ⁻¹	5-10 ¹⁴			
Power operation days per year, days	230÷240			
Fuel	UO ₂ - 90% HEU			
Core height, mm	1000			
The number of loop channels, pcs.	11			
Planned life-time	Till at least 2035			

INTRODUCTION Parameters of MIR.M1 Loops

Parameter	Loops						
	PV-1	PVK-1	PV-2	PVK-2	PVP-2	PG	
Coolant	Water	Water, Boiling	Water	Water, Boiling	Water, Boiling, Steam	He, N ₂	
Number of channels	2	2	2	2	1	1	
Channel capacity, kW	1500	1500	1500	1500	2000	160	
Coolant temp., ℃	350	350	350	355	550	600	
Max pressure, MPa	16,8	16,8	17,8	17,8	20,0	20,0	
Max flow rate , t/h	16,0	14,0	16,0	14,0	10,0	-	

Preparation of experiments with fresh and fuel rods and spent fuel NPP

Irradiation rigs to test fuel and structural materials

Gauges for in-pile measurements installing installed in fuel rods

www.niiar.ru

The 18th IGORR Conference, 3-7 December 2017, Sydney, Australia

KEY TRENDS IN FUEL TESTS

Normal conditions, abnormal conditions (RAMP), maneuvering, design-basis accidents (LOCA, RIA)

Testing complex of fuel and core components of nuclear reactors of different types

Fission gas release from leaking fuel rods and Gd fuel rods with artificial defects

RAMP TESTS

Testing under Power Cycling (Maneuvering)

LOCA TESTS

The 18th IGORR Conference, 3-7 December 2017, Sydney, Australia

www.niiar.ru The 18th IGORR Conference, 3-7 December 2017, Sydney, Australia

Fission Product Release Investigation of Leaking Fuel Rods

www.niiar.ru The 18th IGORR Conference, 3-7 December 2017, Sydney, Australia

Activities to Enhance the MIR.M1 Reactor Safety

After the Fukushima accident, all RIAR's reactors were subject to analysis of consequences from all possible off-site impacts such as earthquake (6 grades), tornado and fire at the adjacent territory.

Key tasks to enhance the MIR.M1 safety:

- 1. Long-term (for more than 24 hours) provision of power for safety-important systems.
- 2. Anti-seismic system implementation
- 3. Abgrading the fire protection system .

Emergency power supply system modernization

New diesel-based emergency power supply system was put into operation

Anti-seismic system implementation

Anti-seismic system was implemented able to control the reactor building and reactor supporting structure vibrations and output signals to the emergency system in case the set threshold is exceeded.

Seismic sensor CMG-5TD-M.

Abrading the fire protection system

D

New automatic fire detection and alarm system

Abrading the fire protection system

1. Nominal pump output, ls	10,0
2. Nominal pump pressure, m	60,0
3. Nominal rotation frequency, rot/min	3400
4. Nominal pumping head, m	1,5
5. Max pumping head, m	5,0

Installation of additional mobile water pumps

CONCLUSIONS

Activities to further enlarge the MIR.M1's experimental capabilities and develop promising areas of research:

□ improvement of the techniques to control parameters and perform in-reactor measurements of fuel rods characteristics;

reactor tests in justification of the improved and new types of VVER and PWR fuels under different designed conditions;

□ use of a gas-cooled loop to examine core components and FA dummies of high-temperature gas-cooled reactors;

reactor tests to improve and justify fuels of SMR;

permanently upgrading of the MIR.M1 reactor and its equipment and extension of its lifetime, including replacement of Be blocks.

Thank you for your attention!

For further information please contact:

Alexey IZHUTOV JSC "SSC RIAR" Tel.: +7(84235) 3 20 21 Web: www.niiar.ru E-mail: adm@niiar.ru