Validation of the Stable Period Method Against Analytic Solution

T. MAKMAL^{1,2}, N. HAZENSPRUNG¹, S. DAY²

1) NUCLEAR PHYSICS AND ENGINEERING DIVISION, SNRC, YAVNE, ISRAEL 2) DEPARTMENT OF ENGINEERING PHYSICS, MCMASTER UNIVERSITY, ONTARIO, CANADA

Part I: Introduction

2

- The determination of the reactivity worth is essential to assure safe and reliable operation of the reactor system.
- Two practical approaches to calculate the reactivity worth of the control rods:
 - The rod-drop method
 - The stable period method ("SPM").
- The SPM is more accurate and official due to the next advantages of this method:
 - The standard power monitoring equipment is available.
 - The detector location has no effect on the measurements.
 - The method allows measurement of the differential reactivity worth.
- The main disadvantage of this method is the time considerations.

Part I: Introduction

3

• The reactivity of the system is related to the stable reactor period, expressed by the inhour equation:

$$o = \frac{l}{T} + \sum_{i=1}^{6} \frac{\beta_i}{1 + \lambda_i \cdot T}$$

• The period (T), can be found by the ratio of the power (P) within known time (t).

$$P(t) = P(0) \cdot e^{t/T}$$

- The analysis considers two RRs, Each uses different practical applications of the SPM for calibrating the regulating rod.
- Following the calibration of the regulating rod, cross-calibrate the highworth shim-safety rod bank has been estimated.

Part I: The objective of this study

- The objective of this study is to estimate a conservative uncertainty for the stable period method using the official procedure of the two selected reactors.
- The following sources were considered as contributing to the overall uncertainty:
 - o uncertainty on parameters used in calculations;
 - uncertainty due to the procedure, and
 - o uncertainty related to delayed neutron effectiveness coefficient.

Part II : Doubling time Method

 \bigcirc

5								
	Rod I	Position	Doubling	g Times	Average	Average	Rod	Rod
Increment#	Initial[0/]	Einal[0/]	T[aca]	T[aca]	Doubling	Period	Worth	Worth
	minai[%]	Filial[%]	I ₁ [sec]	$I_2[sec]$	Time [sec]	[sec]	[mk]	[dk/k]
1	0	19.3	122	126	124.0	178.9	0.488	0.000488
2	19.3	28.1	128	132	130.0	187.6	0.468	0.000468
3	28.1	36.55	102	103	102.5	147.9	0.572	0.000572
4	36.55	45.1	93	93	93.0	134.2	0.620	0.000620
5	45.1	54.5	88	88.7	88.4	127.5	0.646	0.000646
6	54.5	60.9	185	187	186.0	268.3	0.342	0.000342
7	60.9	71.4	128	127	127.5	183.9	0.476	0.000476
8	71.4	100	93	94	93.5	134.9	0.617	0.000617
					Tota	l reactivity:	4.230	0.004230
250 —								
Ŷ: 265,9								
ି ଷ 150 –								
^{So} Doch in on	om ont own	anim ant ato	nta fram i	nitial n	01.101			
Each mer	ement exp	erment sta	rts monn i	innai p	ower.			
3.5								
• The total	• The total length of the rod divided into 8 increments.							
2.5 (0)u								
V(1) ²					Step#3			
1.5				Step#2				
	Step#1				Λ			
1 0	50	100	150	t [sec]	200	250	300	35

IGORR 2017

IGORR 2017

Part III: Uncertainty per Increment (1/2)

uncertainty on parameters used in calculations;

The random errors per increment combined using linear error propagation with the assumption that all individual uncertainties are independent.

Total Random Uncertainty per Increment					
Method	Absolute uncertainty [mk]	Average relative uncertainty			
Doubling time	0.04	7%			
30 Seconds	0.09	10%			
Uncertainty on Time Measurement					
Method	Absolute uncertainty [mk]	Average relative uncertainty			
Doubling time	0.01	2%			
30 Seconds	0.03	4%			
GORR 2017 Validation of the Stable Period Method Against Analytic Solution					

Part III : Uncertainty per Increment (3/3)

<u>Uncertainty associated with the method:</u>

• Deviation between the experimental to the numeric solution was found by fitting the experimental period to the numeric reactivity.

Reactor A – Doubling Time Method							
Increment#	Experimental Period [sec]	Numeric Reactivity [mk]Experimental Reactivity [mk]Reactivity [m]		v deviation hk]	Reactivity Percentage Deviation		
1	178.89	0.483	0.488	-0.005		-0.96%	
Q	187 55	0.464	0.469	0.000		0 =0%	
Μ	ethod	Average Absolute uncertainty [mk] Average		e relative uncertainty			
Doub	ling time	-0.006			-1.1%		
30 S	Seconds	-0.012		-1.4%			
Reactor B – 30 Seconds Method							
Increment#	Experimental Period [sec]	Numeric Reactivity [mk]	Experimental Reactivity [mk]	Reactivity deviation [mk]		Reactivity Percentage Deviation	
1	94.54	0.745	0.761	-0.016		-2.16%	
2	79.09	0.860	0.872	-0.012		-1.38%	
3	64.48	1.004	1.012	-0.008		-0.74%	

IGORR 2017

Part IV : Propagation of Errors (1/2)

• The random error propagation on sum of (N) increments calculated by formal linear propagation.

Total Random Uncertainty = $\sqrt{\sum_{i}^{N} (\Delta \rho_i)^2}$

Reactor	Absolute uncertainty	Relative uncertainty		
A – Doubling Time	0.10 mk	2%		
B – 30 seconds	0.16 mk	6%		

• The systematic error on sum of (N) increments found by summing the average systematic error on each incremental

Total Systematic Uncertainty = $N \cdot \Delta \rho_{Average sys'error}$

Reactor	Absolute uncertainty	Relative uncertainty	
A – Doubling Time	0.05 mk	1%	
B – 30 seconds	0.04 mk	3%	

Part IV : Propagation of Errors (2/2)

<u>Cross-calibrate the bank of high-worth shim-safety rods:</u>

- The regulating rod reactivity value is used to cross-calibrate the shim rods.
- The shim-safety rods calibration carry out by moving an increment of the shim rod and compensating using the already calibrated regulating rod.
- As in the previous analysis, standard error propagation methods are used to estimate the random and the systematic uncertainty components.

Reactor	Relative systematic uncertainty	Relative random uncertainty		
A – Doubling Time	1.1 %	±1.4%		
B – 30 seconds	1.4 %	±1.7%		

Part V :Importance factor (1/2)

12

Systematic uncertainty related to delayed neutron effectiveness coefficient:

- Treated separately from the other parameters used in the *SPM* calculations in order to highlight the importance of the uncertainty in this quantity.
- The effectiveness of the delayed neutrons is captured by introducing a scaling factor (γ) on the delayed neutron fraction, $\beta eff \equiv \gamma \beta$, varies from 1.25 to 1.
- The Importance Factor range depends on fuel enrichment, core properties (size and structure) the calculations code and the cross-section library.
- The use of unsuitable importance factor results an additional significant systematic error.

Part V : Importance factor (2/2)

Systematic uncertainty related to delayed neutron effectiveness coefficient:

• To investigate the sensitivity of the importance factor on the rod worth reactivity, a numeric solution estimates the reactivity values between 0.1mk to 1mk for different importance factors.

ivity between 1.10 Reactivity deviation between 1.25 to 1.00
7% -27.3%
% -27.9%
3 -28.5%
9% -29.1%
9% -29.8%
-30.4%
-31.1%
3% -31.7%
-32.4%
1

Validation of the Stable Period Method Against Analytic Solution

Part VI : Conclusions

- Analysis of errors found relatively low values of uncertainties in both methods.
- The major advantage of the "doubling time" method is the intrinsic adjustment of the waiting time to the reactivity insertion .
- Digitalization the process can reduce the uncertainties in terms of the human error on time and power reading.
- The uncertainty on the importance factor represents the largest potential source of systematic uncertainty.
- Monte-Carlo codes can predict this parameter using Meulekamp's method.

15

Questions?

IGORR 2017