Application of the next generation of the OSCAR code system to the ETRR-2 multi-cycle depletion benchmark

M. Mashau, S.A. Groenewald, F.A. van Heerden

The South African Nuclear Energy Corporation (Necsa) SOC Ltd, Building P1900, P.O. Box 582, Pretoria, 0001, South Africa

maurice.mashau@necsa.co.za

18th IGORR Conference

03-07 December 2017, Sydney, Australia

- IAEA CRP T12029 focuses on benchmarking computational tools against experimental data on fuel burnup and material activation for utilization, operation and safety analysis of reseach reactors (from 2015 - 2018).
- Verification and validation of computational reactor physics codes.
- General overview of the OSCAR code system.
- Next generation high-fidelity scheme/tools implemented in the OSCAR code system.
- The scheme is applied to the ETRR-2 multi-cycle depletion benchmark (which is part of the CRP).

Facility Overview: ETRR-2 Research Reactor in Egypt

- Open pool type.
- Nominal power: 22 MW.
- Max. thermal neutron flux (10¹⁴).
- Fuelled with low-enriched (19.7 %) U₃O₈ fuel elements.
- Cooled and moderated with light water.
- Reflected by beryllium elements.
- 6 control blades.

http://tc.iaea.org/tcweb/regionalsites/africa/features/gallery/galleryitem/default.asp?galleryid=554

- Control rod calibration experiments:
 - Start-up cores with critical bank positions.
 - Core SU-29-2SO was chosen as a basic core configuration (Rod 5 calibration against rods 3 & 6).
 - Experimental data was taken from a previous IAEA CRP 1496.
- Fuel burnup experiments:
 - First four operating cycles were considered for multi-cycle depletion analysis.
 - The discharge burnup of three fuel elements were measured using gamma spectroscopy.
 - Experimental data made available in the current IAEA CRP T12029.

TABLE. FIRST FOUR OPERATING CYCLES

Cycle Name	Full Power Days	Downtime (Years)
Cycle 1	7.30	2.6
Cycle 2	16.00	0.9
Cycle 3	13.75	2.8
Cycle 4	13.64	

TABLE. MEASURED FUEL ELEMENTS

-			
	Number of Cycles in Core	Initial ²³⁵ U Mass (g)	Name
-	1	148.22	FE022
necsa 🛓	2	148.22	FE014
South African Nuclear Energy Corporation Lto	4	209.02	FE020

Benchmark specifications are unclear on how the measured burnup was calculated and therefore the following assumptions were made:

- Measured burnup is an average for the entire assembly, and
- Burnup percentage is defined as:

$$\mathsf{Burnup}\ \% = \frac{\mathsf{Total}\ \mathsf{number}\ \mathsf{of}\ \mathsf{fissioned}\ \mathsf{atoms}}{\mathsf{Initial}\ \mathsf{fissile}\ \mathsf{atoms}} \times 100 \tag{1}$$

with the number of fissioned atoms estimated using,

Total number of fissioned atoms
$$\approx \sum_{c=1}^{T} \frac{N_{c,1} - N_{c,0}}{\gamma}$$
, (2)

with T the total number of cycles the target assembly has in the core $N_{c,0}, N_{c,1}$ the number of ¹³⁷ Cs atoms at the beginning and end of cycle C between the transformation of transformation of transformation of the transformation of the transformation of transformation of

- Serpent (Monte Carlo):
 - Modified v2.1.23.
 - Modifications include some basic operational support functionalitiescontrol bank movements during irradiation sequence, critical bank searches etc.
 - ENDF/B-VII.0 based cross section libraries.
- HEADE (2D lattice code):
 - Collision probablity method.
 - WIMS-E libraries based on JEFF2.2 evaluation.
 - code used to prepare fuel cross sections for the core diffusion solver.
- MGRAC (3D Nodal Diffusion Solver):
 - Multi-Group Analytic Nodal Method.
 - Homogenized cross sections prepared by Serpent and HEADE.
 - Microscopic depletion model.

Calculational Approach: The OSCAR-5 Code System

M. Mashau et al

ETRR-2 depletion benchmark

(a) Fuel Assembly

M. Mashau et al.

ETRR-2 depletion benchmark

(a) Fuel Assembly (b) Control Blade

M. Mashau et al.

ETRR-2 depletion benchmark

(a) Fuel Assembly (b) Control Blade (c) Control Guide

M. Mashau et al.

ETRR-2 depletion benchmark

(d) Cobalt Irradiation Facility

Model Description: Core Configurations

(a) Core SU-29-2SO

10 / 18

• • • • • • • •

Model Description: Overlay Nodal Mesh for MGRAC

(a) Radial View

(b) Axial View

- Radial meshes were chosen in such a way that the main core pitch is preserved.
- Axially divided into six regions/cuts (two active cuts, two bottom and top reflector cuts).
- Nodal parameters (node average cross sections and leakages) were generated on each node in the mesh using Serpent and HEADE for fuel cross sections.

M. Mashau et al.

ETRR-2 depletion benchmark

18th IGORR 2017

11 / 18

Model Testing: 3D Errors Induced in the Model

TABLE. 3D ERROR ESTIMATION OF MGRAC MODEL

	Reference	MGRAC Offset	Max Power
	k _{eff}	(pcm)	Error
All Rods Out	1.07865	-700	4.20 %
All Rods 50 % Extracted	1.00662	57	4.00 %
All Rods In	0.91106	-647	3.85 %

- Maximum assembly power error is in the order of 4 %.
- Axial leakages are not preserved in the 3D model.
- From the results, an offset of about 600 pcm was deduced between Serpent and MGRAC model.

Control Rod Calibration Results

Rod 5 Differential Worth Curve

- Our model slightly over-estimates the measured values in most cases.
- Serpent results also seemed to be overly sensitive to reactivity changes (towards the core center).
- Deviation between our model and the measured values is also clearly seen from the integral rod worth curve.

M. Mashau et al.

ETRR-2 depletion benchmark

18th IGORR 2017

13 / 18

Cycle Simulation: Critical Bank Positions During Irradiation Period

TABLE. BURNUP OF THE THREE SPENT FUEL ELEMENTS

Name	Measured	Burnup (%)	
	Burnup %	Serpent	MGRAC
FE022	3.26	3.71	3.82
FE014	10.07	11.77	11.98
FE020	20.92	20.11	20.52

- Both models are reasonably in good agreement with the measured burnup % derived from the experimental measurements.
- MGRAC slightly predicted higher burnup for the three selected assemblies.

イロト イポト イヨト イヨト

Difference in Discharge ²³⁵U Mass between Serpent and MGRAC

M. Mashau et al.

ETRR-2 depletion benchmark

Concluding Remarks and Recommendations

- This work forms part of our contribution to a current IAEA CRP T12029 which focuses on benchmarking computational tools against experimental data on fuel burnup and material activation for research reactors.
- CRP was considered to be a good candidate to test the applicability of the high-fidelity scheme in modelling research reactors.
- A detailed heterogeneous code-independent model was created for the ETRR-2 research reactor.
- Analysis was performed on rod calibration experiments as well as depletion of the first four operational cycles with Serpent and MGRAC.
- The overall performance of the models was reasonably good, showing good agreement with experimental reactivity and burnup measurements.
- For future work, models are to be refined, especially for fuel cross section generation as well as modelling additional rod calibration experiments.

Thank You

• • • • • • • •