

Australian Government

OPAL CNS Moderator Performance

Weijian Lu

OPAL CNS Reliability from Commissioning (Nov 2006) to Present

CNS Reliability (%) OPAL Reliability (%)

OPAL Reactor Facilities

What Happened to CNS Flux?

- In early 2017, neutron users have noticed a significant drop in cold neutron flux ~ -20%
- Possible causes
 - Neutron guides (fault discovered in 2011)
 - Source flux

Heat Load vs Reactor Power

Measured Heat Load on the CNS In-pile by Cryogenic Helium Thermal Balance Linear fits indicate nuclear heat load (W/MW) by the slope and non-nuclear heat load by the offset (W)

CNS Heat Load vs Reactor Power

• Nuclear Heat Load (normalised to 3.6 kW)

• OPAL Thermal Power (normalised to 20 MW)

Helium Temperature Sensor Drift

Process Conditions (nominal)	Sensitivity	Typical Operational Variation by Conservative Estimation	Resultant CNS Flux Variation
Helium temp. sensor drift	15%/K	~-1 K	-15%

- Sensors had recently been checked
- Measured a stable bias of ~1 K subject to slow drift (years), but no evidence for cycle-to-cycle "oscillation"

CNS Heat Load (watts)

• Heat Load (watts)

CNS Flux Sensitivity (1)

Process Conditions (nominal)	Sensitivity	Typical Operational Variation by Conservative Estimation	Resultant CNS Flux Variation
D2O purity (99.5%)	6.66%/%	±0.5%	±3.33%
D2O temp. (35 °C)	-0.0228%/°C	±1 °C	±0.0228%
D2O gap between CNS thimble and beam tube (1 mm)	-5.52%/mm	negligible	negligible
LD2 temp. (24.5 K)	-4.38%/K	±0.5 K	±2.2%
LD2 ortho/para ratio (3:1)	0.288%/%	Unknown but expected to be small	±1% (order of magnitude estimation)

MCNP Calculation vs Measurement

CNS Gain from 20.5 K to 19.6 K (4 Dec 2016)

CNS Flux Sensitivity (2)

Process Conditions (nominal)	Sensitivity	Typical Operational Variation by Conservative Estimation	Resultant CNS Flux Variation
Control rod positions (critical positions for the first core)	5.58% between actual configuration and that after 180° rotation	Control rod movement pattern is repeated in every reactor cycle	N/A
Reactor core (first core and equilibrium core)	4.56% between the two cores	Fuel management strategy	To be assessed further

Fuel Management Programs

- Cell code: CONDOR
- Diffusion code: CITVAP
 - Flux and power density
 - Reactivity
 - Poison transients
 - Adjoint flux
 - Kinetic parameters

Core Power Density – Flux Tilt

CNS Heat Load vs Reactor Power

• Nuclear Heat Load (normalised to 3.6 kW)

OPAL Thermal Power (normalised to 20 MW)

Flux Tile N-S biased to average

Conclusions

- CNS heat load is an excellent indicator of source flux
- Core configuration can have a significant impact on the CNS flux
- Can be predicted by numerical calculations

Ansto

