

Development of nuclear research facility concept with multipurpose fast test reactor MBIR

Research Institute of Nuclear Reactors, State Scientific Centre, Joint-Stock Company

<u>S.I. Novikov,</u> S.A. Kiverov and V.I. Cherevko

Purpose and objectives of the MBIR reactor project

Start of Project: in **2006 : The first Report on the initiative of NIKIET:** "Conceptual design of the MBIR reactor including cost estimation and proposed administration and management of design engineering work"

The decision to construct high-flux fast research reactor MBIR <u>was taken</u> on the 22nd November 2007 by the Science and Technology Board #1 at ROSATOM State Atomic Energy Corporation".

Purpose of MBIR construction: to have a high-flux fast research reactor with unique characteristics attractive to its Consumers, promote and facilitate advances in experimental facilities of nuclear power industry of the Russian Federation.

The MBIR reactor objectives:

- Irradiation experiments and post-irradiation examinations;
- Research & development in support of new production methods for radioisotopes and engineering design configuration;
- Testing of new equipment and engineering design configurations;
- Related objective: generation of electric power and heat

Parameter	Value	
Nominal thermal capacity of the reactor, MW	150	
Maximum/ average neutron flux density in the core, cm ⁻² ·s ⁻¹	5.3×10 ¹⁵ /3.1×10 ¹⁵	
Spacing of elements in the core , mm	75	
Number of fuel assemblies in the core, pcs.	93	
Number of fuel elements in one fuel assembly, pcs.	91	
Number of positions in the core for materials test rigs or isotope production rigs	14	
Number of positions intended for test channels	3	
Number of positions intended for installing one loop channel	7	
Number of loop channels in the core / in the lateral blanket	1/2	
Fuel for standard fuel assemblies	Mixed uranium-plutonium oxide fuel	
Weight content of PuO_2 in the MOX-component of vibropac fuel, %	38.8	
Height of fuel column, mm	550	
Reactor configuration	Loop-type	
Number of loops for heat transfer	2	
Number of heat removal circuits	3	
Primary and secondary coolant	Sodium	
Coolant flow direction in the core	Bottom-upwards	
Heat removal from the reactor core	Cooling is done by forced circulation when the reactor is under	
	operation at power / natural circulation when it is shutdown	
Protective gas in the gas cavities of the reactor and its containment vessel	Argon	
Design lifetime, yr.	50	
Reactor operation between refueling operations, EFPD	100	
Reactor shutdown period for regularly scheduled outages including refueling operations, d	35 – 45	
Reactor availability factor	0.65	

Primary circuit

Parameter	Value
Primary coolant temperature: - At the reactor inlet, °C - At the reactor outlet, °C	330 512
Sodium flow rate through the reactor, kg/s	650
Pressure in the primary circuit, MPa	No higher than 0.7
Intermediate heat exchanger (IHE): - Thermal capacity, MW	72
Emergency heat exchanger (EHE): - Thermal capacity, MW	3
Primary coolant pump (PCP): - Flow rate, m ³ /h	1350

Design specifics of the MBIR reactor Secondary circuit (Option 1)

Parameter	Value
Secondary coolant temperature: - At the IHE inlet, °C - At the IHE outlet, °C	298 479
Sodium flow rate through IHE, kg/s	310
Steam generator: - Thermal capacity, MW	36 (2 steam generators per loop)
Secondary coolant pump SCP-2: - flow rate, m ³ /h	1270
Nominal pressure, MPa	0.64 pressure in the circuit or 0.3 (pump discharge)

Secondary circuit (Option 2)

Parameter	Value
Secondary coolant temperature:	
- At the IHE inlet, °C	298
- At the IHE outlet, °C	479
Sodium flow rate through IHE, kg/s	310
Modular inverted steam generator (MISG): - Thermal capacity, MW	72 (3 modules of 24 MW each)
Electromagnetic pump (EMP): - Flow rate, m ³ /h	1268
Nominal pressure, MPa	0.5

Emergency heat removal system (EHRS)

Parameter	Value
Emergency heat exchanger (EHE): - Thermal capacity, MW	3
EHRS coolant temperature: - At the EHE inlet, °C - At the EHE outlet, °C	293 486
Sodium flow rate in the EHRS loop through EHE, kg/s	12.12
Air heat exchanger (AHE): - Thermal capacity, MW	3
Electromagnetic pump (EMP) for EHRS loop: - Flow rate, m ³ /h	49.5
Nominal pressure, MPa	0.0033

Experimental capabilities-materials test rig (MTR)

Parameter	Value
Width across flats, mm	72.2
Height, mm	2 700.0
MTR usable volume, cm ³	2 280.0
Number of MTR (core)	14
Number of MTR (1 st circle of blanket)	No more than 36
Dose rate in the core, dpa/year*)	20÷24
Dose rate (1 st circle of blanket), dpa/year*)	14÷17
Maximal neutron fluence, (En > 0.1 MeV), cm ⁻²	1.5×10 ²³

- There are four design options of the materials test assembly depending on the shape of inner duct (round or hexahedral) and sodium circulation at the inlet (from the high-pressure and low-pressure chambers).
 - The design engineering of materials test assembly (MTA) is performed based on the technical requirements specified by the Customer to fulfill irradiation test objectives.
- MTR design provides for continuation of irradiation testing launched in the BOR-60 reactor. Two fullsize BOR-60 irradiation rigs can be accommodated within the MBIR shroud.

Experimental capabilities-Loop test facility (LTF)

LTF parameter*	Value
overall height of LTF, mm	11900
Outer diameter of LTF (at the core level), mm	100
FA coolant temperature (at the inlet/at the outlet), °C	Up to 600 / Up to 900**
oolant temperature at the LTF outlet, °C	Up to 600
FA fueled length, mm	550
odium flow rate through the EFA, kg/s	Up to 2.85
odium flow rate through main circuit of LTF, kg/s	Up to 6.00
FA parameter	Value
FA width across flats, mm	47.0
R length, mm	1245
ower output, kW	Up to 1100

* These parameters are given for sodium-cooled LTF. **) Coolant boiling operating conditions.

Experimental capabilities-irradiation test rig (TR)

Parameter of Pb-Bi TR	Value
Overall height, mm	10890
Width across flats, mm	72.2
Outer / inner diameter of cylinder-shaped end cap at the level of the core, mm	68.0 / 65.0
Coolant flow rate through the Pb-Bi chamber, kg/s	Up to 6.0
Maximum coolant temperature (in the self-supporting Pb- Bi chamber), °C	390±10
Outer/inner diameter of FA, mm	45.0 / 41.0

- Test rig can be used for conducting the following irradiation experiments:
 - Irradiation testing of structural materials and fuels in the specified medium provided that the irradiation temperature is measured and monitored (320÷1800 °C);
 - Testing of mechanical properties of structural materials under irradiation.
- The design engineering of instrumented test rigs (ITR) is performed based on the technical requirements specified by the Customer to fulfill irradiation test objectives

Experimental capabilities of the MBIR reactor

12

Horizontal test channels (HTC)

There are 6 horizontal test channels for the following activities:

- Neutron radiography
- Nuclear physics experiments
- Medical purposes

Neutron radiography cell 7.1 m (length) × 4.1 m (width) × 2.9 m (height)

Vertical test channels (VTC)

There are 8 vertical test channels for the following activities :

- Silicon doping (6 VTCs.)
- Neutron-activation alalysis (2 VTCs)

Silicon doping facility

Experimental capabilities of the MBIR reactor

Irradiation capabilities	Location	Number of TRs	Neutron flux density at the mid-core plane, 10^{15} cm ⁻² ·s ⁻¹	Size, mm
Loop-test facilities		4	4.0	D 100,
Central loop		1	4.9	/ Irradiation positions,
Peripheral	The 1 st and 3 th rings of the lateral blanket	2	2.1 / 1.3	size width across flats 72.2 each
Instrumented test rigs	Core	3	No higherthan 4	Irradiation position, size width across flats 72.2
Irradiation positions for loading materials test rigs and isotope production rigs	Core	14 to a maximum	2.4 - 4.7	Irradiation position, size width across flats 72.2
Vertical test channels	Outside the reactor vessel, within thermal shield at R1675 mm	6	0.0124	D 342
	Outside the reactor vessel,			
	within thermal shield at	2	1.59×10 ⁹ *	D 34
	R2670 mm			
* The above data are given without regard to 10 ¹⁵ cm ⁻² ·s ⁻¹ .				

Experimental capabilities of the MBIR reactor

Parameters attained at the outlets of MBIR horizontal test channels

Composed function	HTC-1, cm ⁻² ·s ⁻¹	HTC-2, 3, cm ⁻² ·s ⁻¹	HTC-4, cm ⁻² ·s ⁻¹	HTC-5, cm ⁻² ·s ⁻¹	HTC-6, cm ⁻² ·s ⁻¹
Neutron flux density E>0.1 MeV	3.28×10 ⁹	9.00×10 ⁸	-	8.36×10 ⁹	3.28×10 ⁹
Neutron flux density 0.01 MeV< E≤0.1 MeV	2.06×10 ⁹	1.42×10 ⁹	-	8.73×10 ⁹	2.06×10 ⁹
Neutron flux density 0.4 eV< E≤0.01 MeV	4.51×10 ⁹	2.45×10 ⁹	2.40×10 ⁵	1.38×10 ¹⁰	4.51×10 ⁹
Neutron flux density E≤0.4 eV	2.38×10 ⁸	6.79×10 ⁷	3.69×10⁵	1.34×10 ⁹	2.38×10 ⁸
Channel purpose	Nuclear physics experiments	Nuclear physics experiments	Neutron radiography	Neutron physics experiments	Neutron physics experiments
HTC location			Outside the reactor vessel		
HTC diameter, mm			D180		

MBIR Project implementation

In 2014

Winter 2019

Spring 2021

Current status of concrete pouring work and plans for equipment mounting for 2021

Thermal shield structures

Core barrel

High-pressure section

Guide tube damper

Drain tank of the primary circuit

Large rotating plug

In December 2019 another stage of manufacture was accomplished by Atommash Branch of AEM-Technology JSC in Volgodonsk which is the manufacture of the main reactor vessel as well as large and small rotating plugs. Quality of manufacture was verified by positive results of integrated quality control testing that included hydraulic pressure test, air test and vacuum tests among other things.

Moreover, the hydraulic pressure test and vacuum testing provided for analyses of stress-strained state of the reactor vessel to verify the applied computer codes and obtained strength calculation data to reveal the compliance of calculated stress-strain data and experimental ones.

Delivery of long-lead equipment

At present time the following large-sized equipment has been delivered to the RIAR's site for the systems important to safety :

- Drain tanks of the primary circuit with volume of 40 $m^3 2 pcs$;
- Drain tanks of the secondary circuit with volume of 50 m³ 2 pcs;
- Drain tanks of the EHRS circuit with volume 12 m³ 2 pcs;
- Thermal shield structures of the reactor- 1 set;
- Guide tube for the reactor refueling system-1 set;
- Electric overhear travelling crane for the reactor hall with a lifting capacity of 125/20/1t;
- Railroad grade gates;
- Crown sheet– 1 set;
- Tanks for high purity water with volume of 25 $m^3 2 pcs$;
- A set of CPS guide sleeves;
- A set of jacket covers for level gages;
- A set of thermocouple jackets;
- Thrust ball bearings for large and small rotating plugs;
- Equipment for vent systems of the main reactor building and fallout shelter.

Drain tanks for sodium coolant were installed in project positions. The reactor vessel is to be delivered to the RIAR's site in 2021.

Prospects

To address the objectives of the National Project targeted at development of technologies for dualcomponent nuclear power system with fast reactors, establishment and operation of the state-of-the-art test facilities in support of dual-component nuclear power system, special attention is being given to include the Project "Establishment of International Research Center based on Multipurpose Fast Test Reactor MBIR and R&D Complex for Advanced Research in Spent Nuclear Fuel Reprocessing, Radioactive Waste Management and Closed Nuclear Fuel Cycle" in the State Program " Development of the RF Nuclear Power Industry".

Conclusion

At present JSC GSPI has accomplished elaboration of design engineering documents for entire development of the MBIR reactor including its test and support facilities which enable main production activities.

Consideration was given to the possible use of existing infrastructure, unique operating experience and human resources of RIAR JSC at the stage of Project elaboration.

The MBIR reactor construction at the RIAR site will make it possible to achieve a number of targets:

- To preserve and expand experimental capabilities across the globe to support the development of innovation-driven nuclear energy technologies with the focus on new-generation nuclear power plants even though operating fast reactor BOR-60 is to be decommissioned.
- To provide nuclear power industry with experimental capabilities and R&D instruments essential for work under projects in support of innovative and evolutionary technologies²³.

Development of nuclear research facility concept with multipurpose fast test reactor MBIR

Thank you for your attention!

Svyatoslav I. NOVIKOV

RIAR JSC, Chief Engineer- Head of MBIR Operation and Engineering Division sinovikov@niiar.ru

