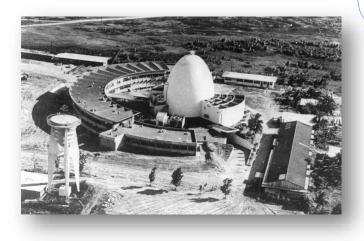
Ageing Management Plan for PRR-1 SATER


A.A. Astronomo and J.M. Marquez Nuclear Reactor Operations Section Department of Science and Technology Philippine Nuclear Research Institute

Brief history of PRR-1

1964) First operated at I MW

1984) Upgraded to 3 MW TRIGA Reactor

1988 Shutdown

2005 Considered for decommissioning

2014) Alternative endpoint considered

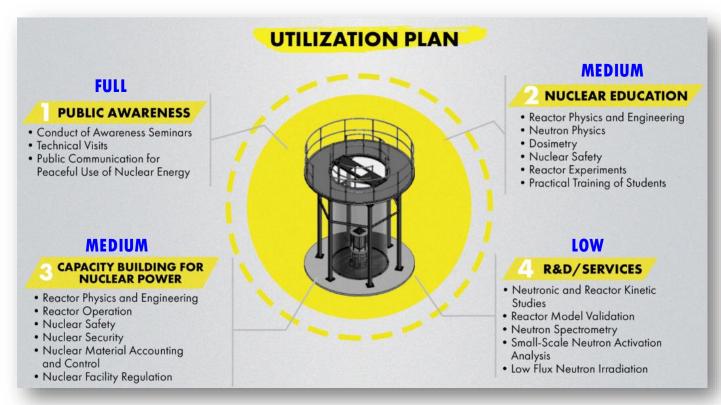
2017) Start of establishment of PRR-I SATER

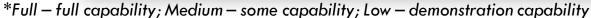
2022) Target start of PRR-I SATER operation

About PRR-1 SATER

Subcritical Assembly for Training, Education, and Research (SATER)

SUPPORT


CCOMMODATE


RAIN

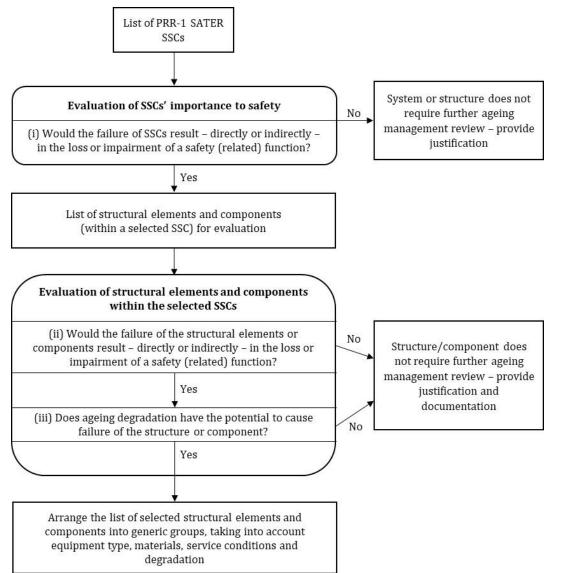
NGAGE

REPURPOSE

nuclear manpower development local access to an operating nuclear facility reactor operators, user, and regulators stakeholders in nuclear and reactor engineering resources of historical PRR-1 facility



About PRR-1 SATER


- ☐ PRR-I is a 60-year-old facility
- ☐ It will house the new SATER facility
- SSCs of PRR-I SATER has a wide range of age
- Ageing will virtually have no effect on the safety-related functions of PRR-I SATER
- An Ageing Management Plan (AMP) was developed as part of the license application for PRR-I SATER
- ☐ The AMP for the facility significantly graded

SSC screening for ageing management

Based on IAEA SSG-10:

- SSCs are reviewed based on their importance or relation to safety
- 2. Specific elements of SSC important to safety are identified
- 3. SSC elements that are important to safety, which are susceptible to failure should be identified

- All SSCs of PRR-I SATER has non-nuclear safety (NNS) functions
- Based on the screening process of IAEA SSG-10, none of the PRR-1 SATER SSCs require further ageing management review
- Nevertheless, a graded evaluation is applied based on the non-nuclear safety-related functions that should be fulfilled by the PRR-I SATER SSCs:
 - (I) shielding against radiation; and
 - (2) uninterrupted monitoring of safety-related parameters.

Guide for evaluating the PRR-1 SSCs (Adapted from Annex 1 of IAEA SSG-10)

Important to safety- related functions (SRF)?*	Ease of replacement	Ageing mechanisms
Y:Yes	A:Very difficult	I: Changes of properties due to neutron irradiation
N: No	B: Difficult technically or costly	2: Changes of properties due to temperature service conditions
T:To some extent	C: Normal D: Readily	 3: Stress or creep 4: Motion, fatigue, or wear 5: Corrosion 6: Chemical processes 7: Erosion 8: Changes of technology 9: Changes of regulations 10: Obsolescence of documentation

^{*}Modified to be applicable for SATER by adding the descriptor, "related" to the (non-nuclear) safety-related function

Criteria for PRR-1 SSC to qualify for the ageing management program

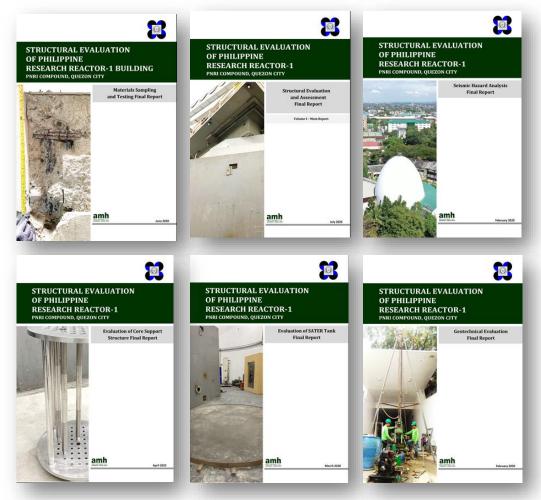
Important to SRF?	Ease of Replacement	Qualifies for Ageing Management?
Y	A or B or C or D	Yes
Т	A or B	No
Т	C or D	Yes
Ν	A or B or C or D	No

PRR-1 SATER SSCs evaluation

SSC Items	Important to SRF?	Ease of Replacement	Ageing Mechanisms	Qualifies for Ageing Management?
Reactor building	Т	A, B	3, 5, 9, 10	No
SATER tank	Y	A, B	3, 5, 7, 9	Yes
Reactor core (fuel rods)	Y	A, B	5	Yes
Core support structure	Т	В	5	No
Reactor power control system (neutron source drive)	Y	В	4, 5, 8	Yes
Makeup water system	Т	В	3,6	No
Reactor monitoring system	Y	В	5, 8	Yes
Electrical power supply	Т	В	8	No
Fuel handling system	Т	В	8	No
Neutron source	Y	В	4	Yes
Irradiated fuel storage system	Y	A, B	5	Yes
Fresh fuel storage management system	N	В	5	No
Fire protection system	N	С	5,8	No
Water purification system	Т	В	4,5	No
Radioactive waste management system	N	В	9,10	No
Human-machine-interface (HMI)	Т	В	8,10	No

AMP for selected PRR-1 SSCs

SSC Items	Minimization of	Detection and	Mitigation of ageing
	ageing degradation	monitoring of ageing	degradation
SATER tank	Water quality	NDT (Liquid Penetrant	Repair of degraded parts
	maintenance	Testing) of tank every 15	
		years	
Reactor core (fuel	Water quality	Random visual inspection	Replace any degraded fuel
rods)	maintenance	of fuel rods	rod with another fuel rod
			that satisfies the OLC
Neutron source	Annual preventive	Annual performance test	Replacement of degraded
drive	maintenance		and/ or obsolete parts
Reactor monitoring	Operation check	Annual testing and	Replacement of degraded
system		calibration of neutron	and/ or obsolete parts
		monitor	
Neutron source	Water quality	Annual visual inspection of	Replace with a new
	maintenance	the neutron source	neutron source
Irradiated fuel	Water quality	Random visual inspection	
storage	maintenance	of fuel rods	
management system			



Quality assurance and record keeping

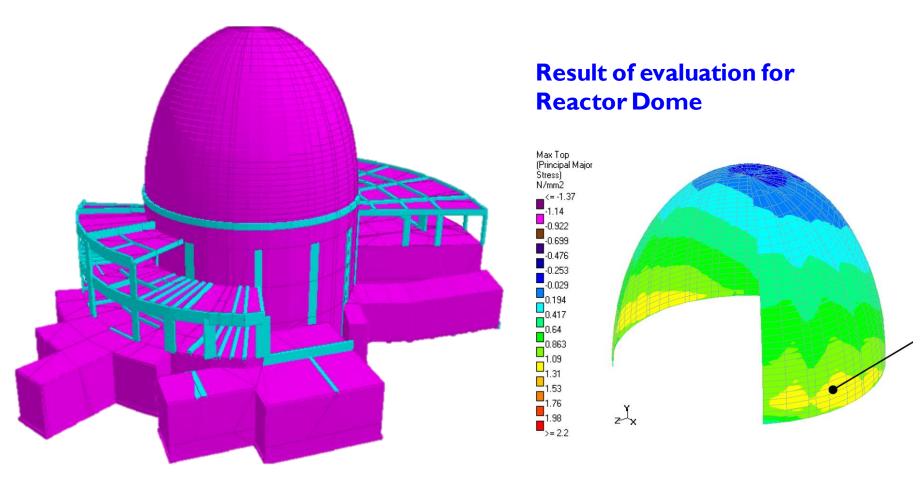
- Continuous evaluation and improvement of the PRR-I AMP is ensured through the PNRI Quality Management System (QMS)
- All equipment and instruments of PRR-I are covered under the annual maintenance and calibration plans
- These plans are annually audited by internal and external auditors
- In addition to QMS documents, operators maintain control of documents that are relevant for the operation and maintenance of the PRR-1 SATER

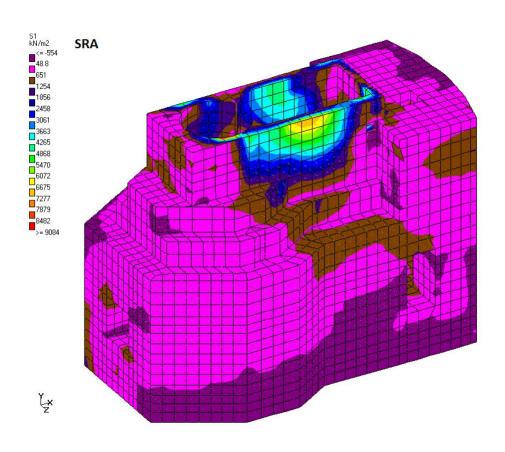
Evaluation of PRR-I structures (2020)

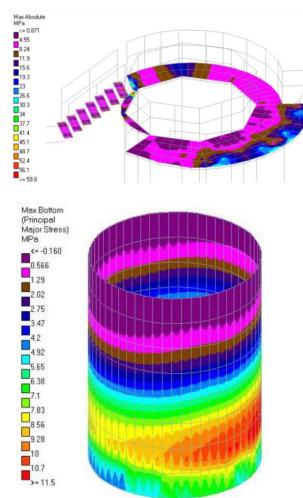
- ☐ Geotechnical Investigation
- ☐ Seismic hazard analysis
- ☐ Structural load analysis
- ☐ Materials sampling and testing
 - I. Core compressive strength
 - 2. Rebound/Schmidt hammer
 - 3. Cement content analysis
 - 4. Chloride content determination
 - 5. Depth of carbonation
 - 6. Sulfate content determination
 - 7. Half-cell potential
 - 8. Ultrasonic pulse velocity

Reactor Dome Fuel Storage Tank Reactor Pool

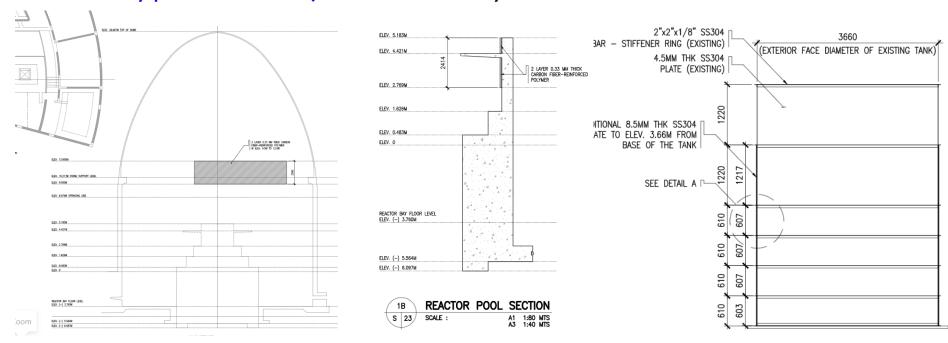
Evaluation of PRR-I structures (2020)






Evaluation of PRR-I structures (2020)

Evaluation of PRR-I structures (2020)



Result of evaluation for former Reactor Pool and Fuel Storage Tank

Retrofitting activities (2021)

Considering the seismic hazards and geotechnical data obtained from the evaluation, PRR-I structures were found to be suitable for operating SATER as a Hazard Category 4 facility. Nevertheless, recommended retrofit measures will be undertaken to meet the life-safety performance objective of the facility.

Installation of carbon fiber-reinforced polymer in vulnerable areas of the reactor dome and former reactor pool

Installation of additional SS layer at the bottom part of the fuel storage tank

Summary

- PRR-I is a sixty-year-old facility, which will be reused for the operation of the new Subcritical Assembly for Training, Education, and Research (SATER).
- An ageing management plan (AMP) is developed to ensure that ageing effects are appropriately and commensurately addressed by the facility operators
- The operating conditions of PRR-1 SATER indicate that ageing will virtually have no effect on the safety-related functions of the facility.
- The AMP developed for PRR-I SATER applies the recommendation of IAEA SSG-I0 with significant grading considering the low hazard associated with the facility.
- Ageing management activities performed for the 60 year old structures of PRR-1 were presented

References

- [1] IAEA, "Ageing Management for Research Reactors," Specific Safety Guide No. SSG-10, 2010.
- [2] IAEA, "SSR-3 Safety of Research Reactors," IAEA Safety Standard, 2016.
- [3] PNRI NROS, "Final Safety Analysis Report of the PRR-I Subcritical Assembly for Training, Education, and Research", 2021.
- [4] AMH Philippines, Inc. "Structural Evaluation of Philippine Research Reactor-1 Building: Final Report", 2020.

