Irradiation Facilities and Examination Benches for Implementing Fuel Programs in the Future Jules Horowitz MTR

D. Parrat, M. Tourasse, C. Gonnier, S. Gaillot, P. Roux
CEA Cadarache, Nuclear Energy Division
daniel.parrat@cea.fr
Contents

- Introduction
- An experimental capacity driven by users needs
- From fuel development process to experimental requests
- Status on fuel hosting systems under development
- Non destructive examination benches
- Conclusions
The JHR: A new MTR in Europe

- A new MTR is under construction in Europe since about 40 years
- Unique opportunity to design a whole irradiation device park
 - In a modern safety frame
 - Targeted to offer maximum information during the experiment (on-line)
 - To fulfill end-user needs for several decades

- To identify the future needs for a suitable design is mandatory… but not so easy!
 - Long term needs (> 2015) are generally not expressed
 - Identified short-term needs shall be solved in the coming years

Milestones of a fuel product development process

Identification and evaluation work

Expected R&D needs and associated time-frame

Nuclear fuel « landscape » after 2015

MTRs
Hot cells etc.
Milestones of a fuel product development process in MTR

Selection / Characterization

- Fuel material knowledge
 - Input data for modeling
 - Microstructure selection

- Behavior understanding
- Laws and models set-up
 - Separate effect experiments
 - Instrumented samples
 - On-line measurements
 - Adapted LHGR time histories

10-15 years

Qualification / Safety tests

- Tests on industrial products
 - Very high burn-ups
 - Soliciting LHGR time histories
 - Failed fuel rods
 - Operation at the limits (ramps, lift-off, LOCA-type, ...)
 - Accidental situations (RIA, FCI, ...)

- Test of industrial products
 - One single fuel rod

Material studies

- Numerous samples

Scientific stakes (Research, Fuel vendors)

Operational stakes (Research, Utilities, Fuel vendors)
Why are fuel irradiations in MTRs necessary for supporting the fuel development process?

Simulation tools are often not sufficiently validated when:

- Fuel product is improved, or is planned to be used beyond current operating conditions
- Fuel reliability shall be more proven
- Safety criteria have been changed

Fuel product is not allowed to be irradiated in a power plant (as a precursor)

- Envelope use conditions
- Operating domain not reachable by a power reactor
- Reactor not existing

⇒ Need to support technical and safety assessment oriented licensing file (industrial partner often leader)

Knowledge valorization in simulation codes is a permanent driving force
Measuring fuel basic data: Need for a science-based approach strategy coupling MTR, hot labs, large facilities and modeling

Out of pile experiments
Temp. effect
Chem. effect

<table>
<thead>
<tr>
<th>Ion Irradiations</th>
<th>Neutron (FP) Irradiations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Facilities (Accelerator)</td>
<td>MTR</td>
</tr>
</tbody>
</table>

Fine characterization
before, after or under irradiation

Multiscale characterization thanks to:
- Hot Lab Facilities: TEM, SIMS, EPMA, XRD...
- Large Facilities / Synchrotron XAS, XRD,
 ⇒ Soleil: a specific beam line for irradiated fuel: Mars BL
What will be the nuclear fuel landscape after 2015?

Expected fuel product evolutions (trends)

- Doped UO$_2$ or UO$_2$ with high content of neutronic absorbers (Gd, Er…)
- MOX with high Pu content or UO$_2$ with high 235U enrichment (> 5%?)
- Innovative UO$_2$ or MOX fuel (geometry, microstructure)
- Triplet {fuel material, pellet geometry, clad material} optimization
- Etc… (specific needs)

Examples of expected issues for improving fuel reliability

Challenges

- Power ramps behavior
 - Protocol, successive ramps...
- Internal EOL pressure
 - FGs, He release
- Run beyond cladding breach
 - FP release, U dissemination...
- Iodine behavior
 - Release, role for SCC
 - Chemistry, link with other FP...

Operational stake

- Power plant maneuverability
- Fuel product life time
- Plant operation and maintenance, wastes
- Power plant flexibility, source term
From development process to experimental requests

Selection
- Irradiation global but precise monitoring (T, fission rate)
- Samples for PIE (microstructure analysis)

Characterization
- Numerous and robust on-line instrumentation
- Flexible LHGR time histories
- Intermediate NDE checking

Understanding
- Homogeneity and representativeness on several fuel rods
- Long term irradiations (creep, corrosion…)
- Conditioning before other tests (ramps…)

Qualification
- High LHGR
- Failure risk and radionuclide release management
- FP on-line measurements
- Damaged sample management

Safety tests
- Highly instrumented and automated test
- Devoted environment
- Phenomenology
Experimental requests - Example 1: Power Ramps

Stakes

- PCI limits (plant maneuverability, flexibility…)
- Kinetics effects - Ultra-fast ramp (up to 1000 W/cm.min)
- FP influence on clad behavior (I…)
- Fuel microstructure evolution (cracks, swelling, FP distribution….)
- Specific fuel vendor/utility needs

Experimental requests from the scientific team

- Welcoming power ramp system (various protocols, successive tests…)
- Ramp campaign: rod conditioning in another irradiation device
- Qualified power increase linearity control (automated system coupled with SPND results…)
- On-line measurement (clad elongation, FGR, coolant activity…)

- Reliable system
 - High accuracy on LHGR target
 - Strong experimental feedback
 - Results feed PCI modeling

- PIE support
Stakes

- Quantification of FGR margins versus limits
 - Release values + kinetics (Envelope power time histories, cycling…)
 - He release specific issue
 - Radioactive source term
- Reduction of uncertainties and margins (Tc, λ, LHGR…)
 - Non linear system: Slight Plin/T increase → Strong FGR increase
- Validation of advanced FG modeling

Experimental requests

- On-line FG measurement (gas sweeping) -> FP Laboratory
- Development of innovative in-pile instrumentation required
 - E.g. acoustic sensor (pressure + gas composition)
- Coupling with PIE thermal analyses
Hosting experimental systems for fuel samples under development

Moving box
to adjust easily the distance sample-JHR core

Δl=350 mm
V → ~5 mm/s
V back ~50 mm/s

For materials (Gen III, IV)
• CALIPSO (high performances)
• MICA

For LWR Fuels

- MADISON
 • Nominal conditions
 • Long term experiments
 • Comparative instrumented irradiation

- ADELINE
 • Beyond design criteria limits
 • High power, transients (power ramps…)
 • Post-failure behavior
 • FG sweeping and recovering

- LORELEI
 • LOCA tests on a separate effect approach
 • Thermal-mechanical behaviour of one LWR rod
 • Includes the post blow-down phase
The MADISON fuel experimental hosting system

Description
A loop device for irradiation of LWR fuel samples in normal conditions of power reactors
- In reflector
- On displacement system
- Heavy components in cubicle

Type of experiment
Characterization and qualification of fuel samples
- Fuel behaviour (FGR, µstructure evolution, corrosion…) vs BU and LHGR
- Long-term irradiations (fuel screening test or rod qualification)
- Re-irradiation before ramps

Type of fuel sample
All type of LWR fuel samples
- PWR / BWR fuel samples
- UO2 fuels (up to 7% in U5)
- MOX fuels (up to 15% Pu/(U+Pu))
- Fresh or high BU fuels (120GWj/t)
- Instrumented (CT, LVDT…)

Carrying capacity
Flexible loop with a large carrying capacity
- 4 rods clad diameter ≤ 10 mm
- 3 rods clad diameter ≥ 10 mm
- Possible evolution 7 rods 200W/cm

Thermal hydraulics/Chemistry
Representative of LWR power reactors
- PWR (155bars, 320 °C, 4 m/s)
- BWR (75 bars, T_sat, 1.8 m/s, low void fraction)
- Designed for 4 rods at 400 W/cm
- Standard chemistry (PWR /BWR)
- Specific chemistry (HWC,…)

LHGR control
Good homogeneity between any 2 identical fuel rods
- 3-5% max. heterogeneity (four fuel rods sample holder) for all type of fuels / Burn up
- Use of thin neutron screens
- Precise thermal balance

Design and manufacturing in collaboration with IFE-Halden
The ADELINE experimental hosting system

The ADELINE irradiation loop in the Jules Horowitz MTR: Testing a LWR fuel rod up to the limits with a high quality level experimental process

S. GAÏLLOT, D. PARRAT, G. LAFFONT, C. GARNIER, C. GONNIER

CEA Nuclear Energy Division
The LORELEI hosting system

Objective
- Thermal-mechanical behaviour of one LWR rod
 - Ballooning and clad burst (fuel relocation)
 - Corrosion at high temperature
 - Quenching and post-quench behaviour
- Radiological consequences: FP source term (with/without fuel re-irradiation)

Technical design
- Device equipped with dewatering and quenching systems (gas and water tanks)
- Temperature controlled by displacement system
- Temperature distribution flattening: neutron screen (axial) and electrical heater (azimuthal)
- Quick installation (for short lived FP measurement) on END benches (gamma scanning and X radiography)
A JHR hosting system development plan accorded to users needs

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madison (LWR fuel)</td>
<td>Available at the start of operation</td>
</tr>
<tr>
<td>Adeline (LWR fuel)</td>
<td>Available at the start of operation</td>
</tr>
<tr>
<td>Lorelei (LWR fuel)</td>
<td>Studied and Licensed</td>
</tr>
<tr>
<td>Instrumented capsule (fuel)</td>
<td>To be developed later on</td>
</tr>
<tr>
<td>Severe accident testing system (LWR fuel)</td>
<td>To be developed later on</td>
</tr>
<tr>
<td>Mica (material)</td>
<td>Available at the start of operation</td>
</tr>
<tr>
<td>Calipso (material)</td>
<td>Studied and licensed</td>
</tr>
<tr>
<td>Corrosion (material)</td>
<td>To be developed later on</td>
</tr>
<tr>
<td>SFR fuel testing systems</td>
<td>To be developed later on</td>
</tr>
<tr>
<td>GFR fuel testing systems</td>
<td>To be developed later on</td>
</tr>
</tbody>
</table>
Non Destructive Examinations in JHR:
General objectives

- Initial checks of the experimental loading status just before the first irradiation
 - Handling possible effects (transportation, insertion in the device)
 - Precise positioning of instrumentation, sensors…

- Adjustment of the experimental protocol after a short irradiation run
 - Sample behavior
 - Power tuning…

- On the spot monitoring of the sample status after a test on the close-by stand located in the reactor pool
 - Limited handlings to preserve the “as tested” sample geometry
 - Geometrical changes after an off-normal transient
 - Quantitative distribution of short half-life fission product…

- Final NDE tests after irradiation sequence
 - On unloaded sample
Non Destructive Examination Benches in JHR

Underwater Neutron Imaging System
- Cracks and gaps
- Hydrides lenses
- Fuel or absorber composition

Fuel Hot cell: Gamma and XR scanning system & multipurpose test benches

Underwater photonic imaging systems (X-ray & γ) in reactor and storage pool

Feasibility study in progress with VTT collaboration

Sample examination
Phebus PF

Hosting system examination (fuel sample inside)

Density mapping
XR tomography (transmission)
Conclusions

-important work carried out on anticipation of users’ needs
 - As a key strategic input to steer priorities in hosting systems developments
 - As a key technical input for the development and the licensing
 - Necessary and beneficial for Users in order to get results as soon as possible

-JHR offers a wide experimental domain
 - A set of experimental hosting systems will be operational at the JHR operational starting
 - Development of some other systems closely linked to needs

-The JHR experimental capacity definition is also dependent from the existing Users community (JHR consortium, JHIP)

-International scientists (young fellows and/or senior experts) are welcomed within the JHR team for building the future JHR community