

Modeling & Analysis of Liquid Deuterium-Water Reactions

by

R. P. Taleyarkhan Oak Ridge National Laboratory Oak Ridge, TN 37831-8045, USA Tel: 615-576-4735; Fax: 615-574-0740

May 24-25, 1995

Prepared for Presentation at IGORR-IV, Gatlinburg, TN, USA

This Presentation Will Highlight

- o Overview of LD2-Water reactions & their connections to research reactors with cold sources
- o Some key features and ingredients of vapor explosions in general
- o Examination of results of 1970 experiment at Grenoble Nuclear Research Center
- o Thermodynamic evaluations of energetics of explosive LD2-D2O reactions

**** This presentation will concentrate only upon the technical aspects of LD₂/LH₂ Water reactions; it is not intended to draw/imply safety-related conclusions for research reactors ****

Notes on Vapor Explosions

******* It is well-known from several Freon-water, LNG-water experiments and experiences that such interactions can be explosive under the right circumstances *******

- o Vapor explosions (also referred to as FCIs) occur (if they do so) in 3 stages:
 - Intimate premixing of hot and cold fluids
 - Triggering to initiate film collapse and dispersion --> explosive heat transfer
 - Propagation through mixture ---> pressure buildup and mechanical work
- o An LD2-Water explosion would fall in the general category of FCIs where water is now the hot fluid
- o Important effects and features to keep in mind are:
 - Initial contact mode (e.g., injection, stratification, radial egress, etc.)
 - Scale effects (small quantities usually need robust external triggering compared with large scale explosions)
 - Thermodynamic states of hot and cold fluid
 - Geometry of reaction zone (inertial constraint)

ANS CONTAINMENT

Grenoble Experiments

- o Geometry was carefully engineered to represent a scaled-down representation of ILL cold source within the reflector tank
- o Experiment parameters vs ILL reactor cold source

<u>Parameter</u>	Experiment	ILL Reactor
-Cold source fluid -Source volume (L) -Source geometry	LH ₂ .025 to 1 double walled	LD ₂ 38 double walled
-Distance from source to reflector tank (m)	0.4	0.7

o Instrumentation

- Pressure taps at walls (response time ?), visual & camera film (<200 fps)

o Experiment types

Impact hammer induced double-wall perforation ---> No explosion
Internal pressure buildup-induced forced ejection --> Explosive reaction

ORNL/OLS - 94/52

Figure 1. Schematic of Experimental Facility (dimensions in mm)

MODE OF CONTACT IS IMPORTANT

- o Several Type 1 experiments were conducted by breaking the walls locally using an impact hammer
 - No explosions occurred, although significant vapor is formed over 1-3 s
 - Localized breakage of walls leads to significant bubbling, and relatively gradual mixing with water through "slits" causing vaporization of LH₂
 - ---> Such a contact mode can not be expected to result in explosions as the principal criterion of premixing with hot fluid is not present; Grenoble experiments clearly demonstrate this aspect.
- o Type 2 experiment gave rise to explosive interaction between LH₂ & Water
 - Overheating and pressurization to 1.5 MPa by breaking the vacuum led to bursting of walls and forced ejection into the bulk coolant
 - Excellent premixing followed by localized spontaneous triggering is evidently sufficient to cause explosive thermal energy transfer and vaporization of LH2 **** No data are given on pressure traces, etc. ****
 - ----> Contact modes that force premixing will likely lead to explosions

Note: 1 ml of LH₂ at 20.3 K = 55 ml of gas at 20.3 K = 850 ml of gas at 293 K

ENERGETICS OF EXPLOSIVE LD2-WATER REACTIONS

- MODELING OF ENERGETICS CAN BE DONE MECHANISTICALLY & ALSO USING THERMODYNAMIC MODELS
 - But, mechanistic models for modeling cryogenic fluid-water explosions are not well developed
 - Thermodynamic models of vapor explosions can be used to provide physically bounding estimates (but should be used with caution since perfect mixing is assumed and no directional effects are considered)
- o WE HAVE UTILIZED THERMODYNAMIC MODELS (to evaluate reasonable upper bound estimates of pressurization, and thermal-to-mechanical energy conversion for Advanced Neutron Source beyond design basis accident studies)
 - Hicks-Menzies model: Essentially adiabatic mixing followed by isentropic fuel-coolant expansion
 - Board-Hall model: Essentially simulation of C-J shock front to a given pressure followed by isentropic fuel-coolant expansion

Note: Actual properties of LD₂ were utilized; work is preliminary

