XA04C1698

MOCUP: MCNP-ORIGEN2 Coupling Utility Programs

Contributors

R. S. Babcock (Montana State University)

R. L. Moore

D. E. Wessol

B. G. Schnitzler

C. A. Wemple

Presented by: C. A. Wemple

IGORR-IV Meeting Gatlinburg, TN, USA May 24-25, 1995

Idaho National Engineering Laboratory

Overview

- Goals and purpose
- Program flow
- Program capabilities
- Applications to test reactors
- Future of MOCUP

What is MOCUP?

- System of interface codes wrapped around MCNP Monte Carlo transport code and ORIGEN2.1 depletion and isotopics code
- GUI for user interface w/codes
- Performs depletion in complex, non-lattice geometries for research and test reactors

Goals and Purpose

- Provide capability for depletion using Monte Carlo fluxes
 - Complex geometries (i.e., test reactors)
 - Target depletion
 - Isotope production
- Minimal extra user input
- Maximum flexibility
- Ease of use (GUI)
- Easy expansion of code
- Completely external to MCNP and ORIGEN

321

MOCUP Program Flow

Z061-CAW-1193-004b

MOCUP Capabilities

- Fuel depletion
 - Arbitrary geometry
 - Arbitrary number of regions
 - Arbitrary number of nuclides tracked
 - Constant flux or power across timestep
- Target depletion
 - Independent nuclide tracking
 - Arbitrary number of target locations and compositions
 - Constant flux across timestep
- Structural material transmutation
- Control depletion

User Supplied Data

- MCNP input with special comments
- ORIGEN2 skeletal input files and execution script
- Normalization factors for flux tallies
- Table of nuclide identifier equivalence (master)
- Computer environment variable settings (for GUI)

Applications of MOCUP (so far . . .)

- INEL
 - Advanced Neutron Source Reactor
 - Advanced Test Reactor
 - Pu disposition reactor analysis
- MIT
 - Pu disposition reactor analysis

Advanced Neutron Source Reactor

- Full complexity model
- Up to 210 fuel zones
- Up to 42 boron zones
- 50 fission products tracked
- Actinides from U-234 to Pu-242 tracked
- Up to 6 depletion steps

Advanced Test Reactor

- Full complexity model
- Some fuel plates explicitly modeled
- 40 fuel assemblies
- Boron zones
- 50 fission products tracked
- Actinides up to Pu-242 tracked
- Calculations for
 - Pu-238 production with Pu-236 contamination
 - Gd filter depletion in fusion materials test vehicle
 - Isotope production (I, Co, etc.)

329

Pu Disposition Studies (continued)

- MIT work
 - Student MS thesis
 - Peripheral regions of PWR
 - Very high burnups (to 100 MWd/kg)
 - Variety of burnable absorbers
 - Variety of fertile isotopes
 - Variety of lattice parameters
 - + F/M ratio
 - + Pins per assembly (17 x 17 to 10 x 10)

Pu Disposition Studies

- Work at both INEL and MIT
- INEL work
 - Weapons-grade Pu disposition
 - Non-fertile fuel types
 - LWR-type lattices
 - Variety of burnable absorbers
 - Very high burnups

Conclusions

- MOCUP is an excellent tool for non-lattice reactor analysis
- Unique capability
- Available for "beta testing" now
- General distribution by late '95

Future of MOCUP

- Final stages of development
- Available for distribution late FY '95
- User manual in editing
- User-defined modifications accepted
- INEL copyright pending