A Simulator-Independent Optimization Tool based on Genetic Algorithm
Applied to Nuclear Reactor Design

Claudio Marcio do Nascimento Abreu Pereira’?, Roberto Schirru® and
Aquilino Senra Martinez®

Abstract

Here is presented an engineering optimization tool based on a genetic algorithm, implemented
according to the method proposed in recent work that has demonstrated the feasibility of the use of
this technique in nuclear reactor core designs. The tool is simulator-independent in the sense that it
can be customized to use most of the simulators which have the input parameters read from
formatted text files and the outputs also written from a text file. As the nuclear reactor simulators
generally use such kind of interface, the proposed tool plays an important role in nuclear reactor
designs. Research reactors may often use non-conventional design approaches, causing different
situations that may lead the nuclear engineer to face new optimization problems. In this case, a
good optimization technique, together with its customizing facility and a friendly man-machine
interface could be very interesting. Here, the tool is described and some advantages are outlined

Introduction

Genetic algorithms (Holland, 1975; Goldberg, 1989; Davis, 1991) has been successfully applied in
many areas of the nuclear engineering, such as reactor physics designs (Pereira, 1999), refueling
optimization (Chapot, 1999; DeChaine, 1995), nuclear power plant status (Pereira, 1998) and
preventive maintenance scheduling optimization (Lapa, 1999; Mufioz, 1997). Motivated by that, it
was developed a generic tool, based on genetic algorithm to be applied in nuclear engineering
designs - SIGA (Simulator-Independent Genetic Algorithm). Such tool is simulator independent in
the sense that it can work together with most of the simulators in which the input parameters are
read from formatted files and the outputs are written in text files. Another fact that has motivating
the development of the proposed tool is that most of the nuclear engineering simulators, specially
in the field of reactor physics and thermal hydraulic, use formatted files for modeling.

The SIGA-Simulator Interface

The role of a design optimization tool is to evaluate design parameter configurations, finding the
best one. Whence, many inputs must be written, many simulations must be done and many
outputs must be read. So, for each evaluation, the optimization tool must realize four main steps:

write the parameters into the input file for the simulator;

run the simulator with that input file;

read the important variables involved in the evaluation process;
evaluate the configuration according to an objective function.

! Instituto de Engenharia Nuclear, Comissdo Nacional de Engenharia Nuclear, Coordenacgéo de
Reatores, CaixaPostal 68550, Rio de Janeiro - RJ — Brasil.

% Universidede Iguacu, FACET - Departamento de Ciéncia da Computagdo. Av. Abilio Augusto
Tévora, 2134, Nova lguagu, RJ — Brasil.

® Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Caixa Postal 68509,
Rio de Janeiro - RJ — Brasil.

Figure 1 shows the relationship between the GA and the Simulator.

Optimization Simulation

GENETIC
ALGORITHM
PARAMETERS

l /' INPUT FILE \‘

SIGA SIMULATOR

T OUTPUT FILE
INITIALIZATION
FILE FOR THE
OPTIMIZATION

Figure 1 - Schematic diagram of the GA-Simulator interface

SIGA reads the genetic parameters file that contains the settings of the genetic algorithm such as
crossover rate, mutation rate and population size, and it also reads the initialization file that will tell
it everything about the optimization, such as:

the parameters that may change during the optimization process;

the allowed range for the parameters;

the output variables that take part of the objective function;

the status of the variable optimization (maximize, minimize, constraint range etc).

as well as:

name and path for the executable code of the simulator;
name and path for the input file for the simulator;
name and path for the output file for the simulator;

The parameter to be written into the input file are defined as a position (row, column) in the file,
and its format. The superior and inferior limit of the ranges for each one is read as optimization
input parameters.

In the output file, the position of the interesting variables as well as the length of the string to be
read are entered in the initialization file for the optimization. Because some times the output file is
not exactly formatted, the position is referenced to an identification string.

It is also possible to correct others variables values that must change together with the optimization
parameters, using an evaluation expression. For example, it is needed to change the fuel radii of a
reactor fuel cell, and the cladding thickness must remain constant, it is necessary to update the
external radii of the cladding (but it is not an optimization parameter - it is consequence). In this
case it is possible to write the cladding external radii as a function of the fuel radii (ex.: external
cladding radii = fuel radii + constant).

Figure 2 shows an example of initialization file for the optimization of nuclear reactor parameters
using the hammer code (Suich, 1967)

; kkkhkkkkhkkkhkkhkhkkhkhkkhkhkkkhkkkhkkkhx*%
3 SIGA INITIALIZATION FILE

4 kkkhkkkkhkkkhkkhkhkkhkhkkhkhkkkhkkkhkkkhx*%
5

6 [Files]

7 e\SIGA\hammer32.exe

8 e\SIGA\hammer.dat

9 e\SIGA\hammer.out

10

11 [Parameters]

12 2

13 1 Rfuel 9 21 %10.8f

14 2 Req 17 21 %10.8f

15

16 [Update]

17 1

18 1 Rclad 16 21 %10.8f PO00+0.05
19

20 [Output]

21 2

22 1Flux 17 4510 M KEFF

23 2Keff 059B 0.99 1.01 1.0 KEFF
24

25 [End]

26

Figure 2 - An example of initialization file for SIGA
The example of Figure 2, can be translated as follow:
using the simulator e:\SIGA\hammer32.exe;

maximize the variable called Flux (line 22) to be read from file e:\SIGA\hammer.out (line 9) 17
lines and 45 columns after the identification KEFF (line 22);

subject to value of variable called Keff (line 23), to be read from file e:\\SIGA\hammer.out (line 9)
0 lines and 5 columns after the identification KEFF (line 22), between 0.99 and 1.01, with
penalization factor 1.0 (line 23);

varying the 2 parameters, Rfuel, to be written in the simulator input file e\\SIGA\hammer.dat (line
8) in line 9 and column 21, with format %210.8f and Req, also to be written in the simulator input file
e:\SIGA\hammer.dat in line 17 and column 21, with format %10.8f, between range specified in the
GENESIS template file.

updating the variable Rclad to be written in the simulator input file e\SIGA\hammer.dat (line 8) in
line 16 and column 21, with format %10.8f according to the expression PO00+0.05 that means, first
parameter (PO0O0) plus constant 0.05.

The Genotype and Fitness used in the GA

Both genotype and fitness used are the ones specified in Pereira (1999). The genotype is formed
by the binary codification of the value of each optimization parameter. The generalized fitness
concept can be written as:

N
f:O'éDCixki 1)

i=1

where O is the objective variable that must be maximized or minimized, DC; is how far is variable
Ci from the constraint range, and k; is the importance factor that emphasizes more or minus the
penalty.

The Tool Implementation

Initially, the GA code was developed based on the Genetic Search Implementation System -
GENESIS (Grefenstette, 1990) version 5.0, and all the interface font code was written as functions
inside the genesis code. The new version of SIGA (under development) is not based on GENESIS.

In order to provide a friendly man-machine interface, a graphical application, called Visual SIGA
was developed to work under Windows 95. Visual SIGA provides a man-machine interface to SIGA
as well as file management allowing the user to easily configure the optimization problem with no
contact with the optimization initialization file or the genetic parameters file. Figure 3 shows the
block diagram of the Visual SIGA system.

Parameters
Simulator

Input

Visua SIGA SIGA SIMULATOR

A

Simulator
Output

Optimization
Parameters

Figure 3 - The Visual SIGA system block diagram.
Visual SIGA provides a windows-based interface that allow user to write the optimization problem
without having contact with the files involved. However, SIGA can be used without Visual SIGA.

SIGA files are written by Visual SIGA. Then, the Visual SIGA passes the control to the SIGA. Once
SIGA is initialized, it controls the simulator reading and writing input and output files respectively.
After each trial, SIGA writes the current output data into SIGA's trial file, in order to be displayed on
screen by Visual SIGA in the form of numbers and graphs. In parallel, the best configuration even
found is written to SIGA Output, and is as well displayed on screen.

Just for illustration, some pictures of the Visual SIGA input screens are showed in Figure 4. In
Figure 4 is shown the input window that have 4 parts: (i) Simulator, were the user can enter the
name and paths for the simulator to be used as well as the input and output files; (ii) Optimization
Parameters, were the parameters to be optimized are described in terms of their positions in the
input file, format, range etc; (iii) Update Variables, were the variables to be updated are described
and (iv) Outputs, to enter the objective and constraints of the problem.

@ (b)

© (d)

Figure 4 - Input screens of the Visual SIGA. (a) Simulator, (b) Optimization Parameters, (c)
Update Variables and (d) Outputs.

The output window allow user to view the exploitation made by the GA, in the actual current trial
and the best configuration ever found. It is also available a graph window that can show the best
average and fithess through the generations.

{ijirs

{{foresass
§ l.- g] 7]

T_ﬁm_

| |Req: 0911587

= —— || |mrriq; 4 428571
|[Rea: 0011587 ~I

|| |eria: 3 so6867

. o.oopood:
[}

Generation

= Fitness Conversence

Average Fitness :"(jl'i
TS — | {Fboc: 0 no04s1
- -0.040171 1 | (B 0 221360

;I

| -1.2366Z4
| o

Generation

Figure 5 - Output Window of the Visual SIGA System

Tool Application and Conclusions

The tool could be efficiently applied to a nuclear reactor cell design optimization using the Hammer
system, reproducing the results shown in past work (Pereira, 1999).

Once verified in past work (Pereira, 1999) that GA is useful in reactor design optimization, and due
to the friendly man-machine interface together with the ability of interfacing with many different
simulators, SIGA has demonstrated to be very useful as optimization tool for nuclear reactor
design. SIGA intend to be a powerful optimization tool that do not need to be operated by an
expert. Hence, the nuclear engineers/designers can easily optimize their designs. Although SIGA
has been developed to be applied to nuclear reactor designs, it can be applied to others
optimization problems, however, the feasibility of the use of GA to such problems must be
investigated.

References

Chapot, J. L. C,, Silva, F. C., Schirru, R., 1999. A New Approach to the Use of Genetic Algorithms
to Solve Pressurized Water Reactor’'s Fuel Menagement Optimization Problem”, Annals of
Nuclear Energy, 26,7, 641-655.

Davis, L., Handbook of Genetic Algorithms, VNR, New York, 1991

DeChaine, M. D. and Feltus, M. A., 1995. Nuclear Fuel Management Optimization Using Genetic
Algorithms, Nuclear Technology, 111, 109-114.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley.

Grefenstette, J. J.; A User’s Guide to Genesis Version 5.0, 1990.

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems, An Arbor, University of Michigan.

Lapa, C. M. F, Pereira, C. M. N. A. and Mol, A.C. A. (1999) Maximization of a Nuclear System
Availability through Maintenance Scheduling Optimization Using Genetic Algorithm, Nuclear
Engineering and Design (to appeatr).

Mufioz, A., Martorell, S. and Serradell, V., 1997. Genetic Algorithms in Optimizing Surveillance
and Maintenance of Components. Reliability Engineering and System Safety 57, 107-120.

Pereira, C. M. N. A. , Schirru, R. e Martinez, A. S., 1999 Basic Investigations Related to Genetic
Algorithms in Core Designs, Annals of Nuclear Energy, 26, 3, 173-193.

Pereira, C. M. N. A., Schirru, R. e Martinez, A. S. (1998) Learning an Optimized Classification
System From a Data Base of Time Series Patterns Using Genetic Algorithm. In: Ebecken, N.
F. F (ed), Data Mining, 1 ed., Computational Mechanics Publications, WIT Press, England.

Suich, J. E. and Honec, H. C., The HAMMER System Heterogeneous Analysis by Multigroup
Methods of Exponentials and Reactors, Savannah River Laboratory, Aiken South Carolina,
1967.

