

DISPARITIES IN THE SAFETY DEMONSTRATIONS FOR RESEARCH REACTORS AND THE NEED FOR HARMONIZATION H. Abou Yehia and G. Bars (IRSN)

TRTR-IGORR Meeting (Septer

IRSN

CONTENTS

- Introduction
- Disparities observed in the safety analyses, especially in the:
 - Approaches and methods
 - Envelope accidents
 - Data used for source term evaluations
 - Thermal-hydraulic calculation codes
- Conclusion

INTRODUCTION (1/2)

- 272 operational research reactors in 58 countries:
 - Great diversity in design, power level and operating modes.
 - Consistency between the safety principles adopted for the design and safety reassessments.

IRSN

INTRODUCTION (2/2)

 Important disparities in the safety analysis methods, data and computational tools used for similar research reactors.

 This may result in different conclusions on the safety level of such reactors.

USE OF DIFFERENT METHODS FOR THE SAFETY ANALYSIS (1/3)

- DTERMINISTIC METHOD:
 - Most frequently used method
 - Selection of limited number of events for analysis.
 - Accidents are postulated without the need to precisely identify their causes.

USE OF DIFFERENT METHODS FOR THE SAFETY ANALYSIS (2/3)

PRABABILISTIC METHOD:

- Often used as a complement to deterministic method.
- Able to take into account common failure modes.
- Some uncertainties in the available generic reliability data which could be not valid for a given research reactor.

USE OF DIFFERENT METHODS FOR THE SAFETY ANALYSIS (3/3)

 Safety analyses for French research reactors are based mainly on deterministic approach with, however,

 probabilistic evaluations concerning external events (air crashes, explosions,..).

DISPARITIES IN THE TYPES OF ENVELOPE ACCIDENTS (1/2)

Envelope accidents taken into account in the safety analyses for similar research reactors cover a range including :

The meltdown of a fuel element, or

the partial or total meltdown of the reactor core.

IRSN

DISPARITIES IN THE TYPES OF ENVELOPE ACCIDENTS (2/2)

 Reactivity insertion accidents resulting in core fuel meltdown are not always analyzed in a consistent manner.

 The same type of reactivity accident is considered as DBA for some reactors and as BDBA for others._

ENVELOPE ACCIDENTS TAKEN INTO ACCOUNT IN THE SAFETY ANALYSIS (1/4)

Reactor	Fuel (Power)	Envelope accident	
BR2	U-Al 93% (100 MW)	200 MJ reactor excursion leading to the core meltdown followed by a water-aluminum interaction (DBA)	
FRM II	U ₃ Si ₂ 90% (20 MW)	Complete meltdown of the core due to the loss of primary cooling system or to a reactivity accident with failure of shutdown system (BDBA)	

ENVELOPE ACCIDENTS TAKEN INTO ACCOUNT IN THE SAFETY ANALYSIS (2/4)

Reactor	Fuel (Power)	Envelope accident
HIFAR	U-A1 60% (10 MW)	 Complete meltdown of the core due to a LOCA (MCA) Complete meltdown of the core with unsealed containment (BDBA)
OPAL	U ₃ Si ₂ 19.75% (20 MW)	 Melting of 36 U-Mo targets due to a loss of coolant flow (BDBA) Melting of 3 fuel plates due to flow blockage (BDBA)

ENVELOPE ACCIDENTS TAKEN INTO ACCOUNT IN THE SAFETY ANALYSIS (3/4)

Reactor	Fuel (Power)	Envelope accident
OSIRIS	U ₃ Si ₂ 19.75% (70 MW)	135 MJ reactor excursion leading to complete meltdown of the core followed by a water-aluminum interaction (DBA)
RHF	U-A1 93% (57 MW)	 - 135 MJ reactor excursion leading to complete meltdown of the core followed by a water-aluminum interaction (DBA) - Uncovering and complete meltdown of the core (DBA)

ENVELOPE ACCIDENTS TAKEN INTO ACCOUNT IN THE SAFETY ANALYSIS (4/4)

Reactor	Fuel (Power)	Envelope accident
RSG-GAS	U ₃ Si ₂ 19.75% (30 MW)	 Meltdown of a fuel element caused by a coolant channel blockage (DBA) ATWS leading to the meltdown of 5 fuel elements (BDBA)
SAFARI-1	U-A1 87%- 93% (20 MW)	Complete meltdown of the core accompanied by the loss of all ventilation systems (MHA)

ENVELOPE ACCIDENTS TAKEN INTO ACCOUNT FOR FRENCH RESEARCH REACTORS (1/2)

- The DBA taken into account in France for pool type research reactors is a BORAX type explosive reactivity accidents.
- Main assumptions:
 - complete core meltdown under water
 - Energy release of 135 MJ, including 9% in the form of mechanical energy.

ENVELOPE ACCIDENTS TAKEN INTO ACCOUNT FOR FRENCH RESEARCH REACTORS (2/2)

- These assumptions were used for the different research reactors in prescriptive manner for the design of the reactor pool and containment building.
- Analyses are currently in progress at the IRSN to obtain more precise data on the consequences of explosive reactivity accidents

THE NEED FOR HARMONIZATION

Harmonization is needed for the:

- types of envelope accidents to be taken into account for research reactors having similar technical characteristics.
- Terminologies used to designate these accidents. _

IRSN

DISPARITIES IN THE DATA USED FOR SOURCE TERM EVALUATIONS (1/3)

- Disparities concerning:
 - Fission products release fractions from molten fuel into pool water and then into the reactor building atmosphere.
 - Hypotheses used to determine the release to the environment.

RELEASE FRACTIONS FROM MOLTEN FUEL INTO POOL WATER (1/2)

	BR2	FRM II	OPAL	OSIRIS	RSG- GAS
Kr,Xe	1	1	1	1	1
Ι	0.5	0.75	0.3	0.8	0.5
Br	0.5	0.75		0.8	0.5
Cs	0.1	0.25	0.3	0.8	0.25
Rb	0.1	0.25	0.3		0.25
Те	0.01	0.001	0.01	0.8	0.25

RELEASE FRACTIONS FROM MOLTEN FUEL INTO POOL WATER (2/2)

	BR2	FRM II	OPAL	OSIRIS	RSG- GAS
Ru	0.01	0.001	0.01	0.1	
Ba,Rh				0.1	
Sr		0.001		0.1	
Actinides		0.001		0.01	
Lanthanides				0.01	

RELEASE FRACTIONS FROM POOL WATER INTO THE REACTOR BUILDING ATMOSPHERE (1/2)

	FRM	OPAL	
	prompt release	delayed release	
Kr, Xe	1		1
Ι	5 10 -4	5 10 -6/h	0.5
Br	5 10 -4	5 10 -6/h	
Cs	1 10 -5	5 10 ⁻⁷ /h	0.01

RELEASE FRACTIONS FROM THE POOL WATER INTO THE REACTOR BUILDING ATMOSPHERE (2/2)

	OSI	RSG-GAS	
	prompt release delayed release		
Rb	0		1 10 -5
Те	5 10 -4	5 10 -6/h	1 10 -5
Ru	0		
Sr	0		
Actinides	0		

RELEASE FRACTIONS IN THE CASE OF CORE MELTDOWN FOLLOWING A LOCA (1/2)

	HIFAR	RHF	SAFARI-1
Noble gases	1	1	1
Ι	0.3	0.8	1
Br		0.8	
Cs	0.3	0.8	0.163
Те	0.01	0.8	0.192

RELEASE FRACTIONS IN CASE OF CORE MELTDOWN FOLLOWING A LOCA (2/2)

	HIFAR	RHF	SAFARI-1
Rb	0.3	0.01	
Ru	0.01	0.1	0.005
Ba, Rh, Sr		0.1	
Actinides		0.01	0.1
Other		0.01	

DISPARITIES IN THE DATA USED FOR SOURCE TERM EVALUATIONS (2/3)

There is a need to:

 Examine the possibility of adopting a single conservative database on release fractions to be used for research reactors.

DISPARITIES IN THE DATA USED FOR SOURCE TERM EVALUATIONS (3/3)

There is a need to:

- Complete experimental data on Fission product release fractions for silicide fuel.
- Get such data for the U-Mo fuel currently being qualified for Research reactors.

IRSN

DISPARITIES RELATING TO THERMAL-HYDRAULIC CALCULATIONS (1/2)

- Diverse thermal-hydraulic codes, originally drawn up for power reactors, were adapted and used, in the safety analyses for research reactors.
- Disparities in the mathematical models and correlations used in the different codes.
- Disparities in their validation levels.

DISPARITIES RELATING TO THERMAL-HYDRAULIC CALCULATIONS (2/2)

Suggestion for:

- Experimental validations with the use of a fuel element instrumented with thermocouples.
- Comparative calculations with different codes for a « reference core » case.

CONCLUSION (1/2)

It is important to:

• Examine and solve the disparities related to fission product release fractions.

 Investigate the possibility of elaborating a common database on this subject.

CONCLUSION (2/2)

 Obtain experimental data on fission product release fractions, in particular for U-Mo

• Continue the validation work concerning computational tools.