HIGH FLUX ISOTOPE REACTOR COLD SOURCE SAFETY ANALYSIS

Presented to TRTR-IGORR Joint Meeting September 14, 2005

> D. H. Cook J. D. Freels C. R. Hyman III F. P. Griffin

The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05- 00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Presentation Outline

- HFIR Cold Source Description
- Safety Analysis Background
- Moderator Volume Analysis Overview
- Hydrogen Explosion Analysis Approach
- Hydrogen System Transient Analyses
- Conclusions

HFIR Cold Source Description

- Existing 4-in. beam tube enlarged and backfitted with 18K hydrogen cold source
- Proximity to core involves high heat load and long horizontal run for hydrogen tubes
- Resultant design is highly active
 - Force-cooled hydrogen loop with decay heat removal requirements
 - Supercritical conditions
 - Reactor scrams and He flooding

HB-4 Beam Tube and Cold Source

HFIR Cold Source Description (Cont'd)

- Proximity to reactor safety equipment presents numerous hazards
- Resultant design uses location and multiple containment boundaries for safety
 - Passive lines through reactor building
 - Cooling equipment and instrumentation just outside reactor building in hydrogen equipment area (HEA)
 - Pressurization equipment and relief points remote from HEA

Transfer Line Route From HB-4 to HEA

Transfer Line Areas of Interest

Storage Tank Areas of Interest

Safety Analysis Background

- Documented safety analysis (DSA) for the HFIR cold source follows DOE Std. 3009 in graded fashion
- Two-phase approach to safety analysis
 - Phase 1 to support helium- and hydrogensystem testing with heater power + helium testing with reactor power
 - Phase 2 to support final hydrogen system testing with reactor power, followed by full power operation

Safety Analysis Background

- Safety analysis addresses moderator volume integrity
 - Detailed thermal analysis
 - Stress analysis
- Safety analysis addresses hydrogen release consequences
 - Explosion
 - Cryogenic effects
- Safety analysis addresses overall system transient performance

Moderator Volume Steady-State Wall Temperature Estimates

Production Mode

Standby Mode

Detailed 3D CFD Models of the Moderator Vessel Compare Well

	Production Mode		Standby Mode	
Variables	FLUENT SKE/RNG	CFX KE/SSG	FLUENT SKE/RNG	CFX KE/SSG
Inlet Temperature (K)	18	18	80	80
Outlet Temperature (K)	22.6/22.6	19.8/22.2	99.25/99.3	99.2/102.7
Heat Load (W)	2998/3008	2859	2470/2468	N/A
Maximum Wall Surface Temperature (K)	43.6/44.3	38.9/44.2	165/164	151/160
Pressure drop (Pa)	2187/2027	2017/2185	650/638	860/924

Explosion Hazards Evaluated Based on Distance From Reactor Core

- Detailed beam tube detonation analysis using CTH code to show primary coolant pressure boundary segmented from hydrogen hazard
- TNT equivalence and strong deflagration models used to estimate consequences to nearby reactor equipment
- Key internal and external explosions considered
 - Hydrogen storage tank
 - Transfer line
 - HEA
 - Transfer line inside building
 - Beam room alcove

External Explosion Hazards Evaluated Using BLAST/FX Code — Developed by Northrop Grumman Mission Systems

System Transient Analyses With ATHENA Code

- "Advanced Thermal-Hydraulic Energy Network Analyzer"
- Extension of RELAP5 code, developed by Idaho National Laboratory for modeling water-reactor coolant systems
 - Includes properties for non-water working fluids, including cryogenic hydrogen and helium
- Performs transient, 1-D simulations of 2-phase fluid flow and heat transfer with adjacent structures
 - Solves mass, momentum, and energy equations for both liquid and vapor phases
 - Solves conduction equations (including internal heating) for structures
 - Includes full range of surface heat transfer correlations
 - Includes engineering models for pipe junctions, valves, pumps, control system logic, etc.

ATHENA Analyses (cont.)

- User specifies dimensions and operating conditions in an input file based upon generic building-block approach
 - Define fluid volume dimensions
 - Define connections between fluid volumes
 - Define solid structure dimensions and heat transfer with adjacent fluid volumes
 - Define control system logic
 - Define initial and operating conditions
- Applications include all categories of transients
 - Increase/decrease in inventory
 - Increase/decrease in heat addition
 - Increase/decrease in flow
 - Operational and accident sequences modeled

ATHENA-Typical Loss of Inventory: Rupture Disk Sizing (Two-phase Event)

ATHENA-Typical LOCA Event: Hydrogen Flow Into the Vacuum Tube-Pressure

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

UT-BATTELI

ATHENA-Typical LOCA Event: hydrogen flow into the vacuum tube-density

ATHENA-Typical LOCA Event: Hydrogen Flow Into The Vacuum Tube-pump Speed

Conclusions

- Systematic and comprehensive identification of hazards completed and safety analysis underway
- Analysis of key hazards performed in detail and many difficult analysis problems addressed

