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NBSR Characteristics

■ MTR type plate fuel
■ HEU
■ U3O8 sintered with aluminum and clad in aluminum
■ 30 fuel elements

• 16 irradiated for 8 cycles (38days/cycle)
• 14 irradiated for 7 cycles

■ Split core
• Each fuel element has 28 inches of fuel
• There is a 7 inch gap between the upper and lower 

portions of the fuel
• Beam tubes face the gap in the fuel
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NBSR Radial Geometry at Core 
Midplane – MCNP Model
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MCNP Model

■ Initial inventories was a “best guess“ based on 
burnup

■ Some fission products lumped with aluminum
■ 30 different fuel materials were used

• Different materials for upper and lower halves of 
each fuel element

• Assumed East-West symmetry
• MONTEBURNS has a limit of 49 materials
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MONTEBURNS Flow Chart
•Initial MCNP Model

•Run MCNP – Obtain Initial Compositions and 1 
Group Cross Sections

•Create ORIGEN2 input file

•Run ORIGEN2 – Burnup and Inventory After 
Specified Time Step

•Create New Materials List for MCNP

•Run MCNP for New 1 Group Cross Sections
•Iterate 
Time 
Step?

•Yes

•No

•Yes

•No

•Save Information – 
MCNP Input Files

•Create new MCNP Model – 
Fresh fuel Inventories + 
MONTEBURNS Generated 
Inventories

•Distribute 
Fuel?
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Problem

■ The neutron cross section files distributed with MCNP do 
not support most radioactive fission products
• Most models lump the non-supported isotopes into representative 

fission products
■ MONTEBURNS approach:

• Determine the mass of non-supported fission products
• Discard the non-supported fission products
• Renormalize the mass fractions to sum to unity
• Adjust the densities of the materials to maintain the mass of the 

actinides
• Result: the end-of-cycle mass is less than the start-of-cycle mass 

■ Burnup capability is being implemented in MCNPX 
(presently in alpha testing) – The approach is the same
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Density Change in NBSR 
MONTEBURNS Analysis
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Dealing With the Issue

■ In our model, the total number of isotopes a material 
up to 60

■ One can download cross section files for many of 
the major radioisotopes
• This solution cannot account for 100% of the mass
• Computation time increases substantially

■ Desire to use real fuel densities
• Important for power distributions
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Our Solution

■ Extract density and mass fractions for each material 
■ Multiply mass fractions by the ratio ρadj/ρactual 
■ Return the aluminum and oxygen mass fractions to 

original values
■ Sum all mass fractions, Σ 
■ The balance (1- Σ) is distributed equally between 

Sn, 138Ba, and 133Cs as representative isotopes
■ This becomes the EOC inventory
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Isotopic Adjustments

■ The choice of representative isotopes was 
• To include some cross section for fission products
• Average fission product cross section is ~25 b
• High absorbing radioisotopes are included:

– 105Rh σa=33000 b
– 135Xe σa=2700000 b
– 149Pm σa=1400 b
– 147Nd σa=400 b

• The average cross section for the three materials chosen 
~10 b
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Critical Angles and Predicted keff

1.00125 ± 0.00027 °0°EOC

1.00393 ± 0.00027-5.0° ¾ cycle

1.00311 ± 0.00027-9.0° Mid cycle

1.00502 ± 0.00028-11.5° ¼ cycle 

1.00006 ± 0.00028-14.6°BOC

1.00101 ± 0.00029 -19.3°Startup Core

keff  
(predicted from model) 

Angle from Vertical
 (measured)

Time step
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Power Distributions in Upper and
Lower Halves

1.061.020.990.98

0.900.92<RR>0.820.72

0.68<>0.740.73<>0.64

0.610.680.80<>0.790.680.60

0.66<>0.860.86<>0.69

0.750.90<>0.970.90

0.951.061.020.92

                         UPPER

1.161.131.121.14

1.151.15<RR>1.151.15

1.17<>1.061.06<>1.20

1.221.141.18<>1.191.161.26

1.22<>1.221.22<>1.22

1.231.25<>1.231.21

1.131.211.141.05

            LOWER



Brookhaven Science Associates
U.S. Department of Energy

Summary

■ Inventories have been developed for the NBSR 
using MONTEBURNS
• Total of 30 different fuel materials
• Split core between upper and lower halves
• Assumed East-West symmetry

■ The MONTEBURNS methodology for calculating 
inventories invokes some assumptions
• MONTEBURNS deals with the unsupported fission 

product problem by reducing material densities
■ This requires some adjustments of the inventories 

before they are used
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Problem

■ ORIGEN2 calculates the existence  of thousands of 
fission products

■ MCNP ENDF/B files have cross sections for only a 
few radioactive fission products

■ MONTEBURNS does not include those fission 
products when it rewrites the MCNP materials

■ Those fission products are lost to the calculation
■ Therefore there the end-of-cycle fuel element mass 

is less than the start-of-cycle mass 


