Determination of Inventories and Power Distributions for the NBSR

A.L. Hanson and D.J. Diamond Energy Sciences and Technology Department Brookhaven National Laboratory

Presented at the TRTR/IGORR Joint Meeting September 15, 2005 Gaithersburg, MD

NBSR Characteristics

- MTR type plate fuelHEU
- \blacksquare U₃O₈ sintered with aluminum and clad in aluminum
- 30 fuel elements
 - 16 irradiated for 8 cycles (38days/cycle)
 - 14 irradiated for 7 cycles
- Split core
 - Each fuel element has 28 inches of fuel
 - There is a 7 inch gap between the upper and lower portions of the fuel
 - Beam tubes face the gap in the fuel

NBSR Radial Geometry at Core Midplane – MCNP Model

MCNP Model

- Initial inventories was a "best guess" based on burnup
- Some fission products lumped with aluminum
- 30 different fuel materials were used
 - Different materials for upper and lower halves of each fuel element
 - Assumed East-West symmetry
 - MONTEBURNS has a limit of 49 materials

MONTEBURNS Flow Chart

Problem

- The neutron cross section files distributed with MCNP do not support most radioactive fission products
 - Most models lump the non-supported isotopes into representative fission products
- MONTEBURNS approach:
 - Determine the mass of non-supported fission products
 - Discard the non-supported fission products
 - Renormalize the mass fractions to sum to unity
 - Adjust the densities of the materials to maintain the mass of the actinides
 - Result: the end-of-cycle mass is less than the start-of-cycle mass

 Burnup capability is being implemented in MCNPX (presently in alpha testing) – The approach is the same

Density Change in NBSR MONTEBURNS Analysis

Dealing With the Issue

- In our model, the total number of isotopes a material up to 60
- One can download cross section files for many of the major radioisotopes
 - This solution cannot account for 100% of the mass
 - Computation time increases substantially
- Desire to use real fuel densities
 - Important for power distributions

Our Solution

- Extract density and mass fractions for each material
- Multiply mass fractions by the ratio ρ_{adj}/ρ_{actual}
- Return the aluminum and oxygen mass fractions to original values
- Sum all mass fractions, Σ
- The balance (1- Σ) is distributed equally between Sn, ¹³⁸Ba, and ¹³³Cs as representative isotopes
- This becomes the EOC inventory

Isotopic Adjustments

The choice of representative isotopes was

- To include some cross section for fission products
- Average fission product cross section is ~25 b
- High absorbing radioisotopes are included:
 - ¹⁰⁵Rh σ_a =33000 b
 - ¹³⁵Xe σ_{a} =2700000 b
 - ¹⁴⁹Pm σ^a=1400 b
 - ¹⁴⁷Nd σ_a =400 b
- The average cross section for the three materials chosen ~10 b

Critical Angles and Predicted k_{eff}

Time step	Angle from Vertical	k _{eff}
	(measured)	(predicted from model)
Startup Core	-19.3°	1.00101 ± 0.00029
BOC	-14.6°	1.00006 ± 0.00028
¼ cycle	-11.5°	1.00502 ± 0.00028
Mid cycle	-9.0°	1.00311 ± 0.00027
³ ⁄ ₄ cycle	-5.0°	1.00393 ± 0.00027
EOC	°0°	1.00125 ± 0.00027
Brookhaven Science Associates	BROOKHEVE	

NATIONAL LABORATORY

U.S. Department of Energy

Power Distributions in Upper and Lower Halves

				UPPER								
			0.92		1.02		1.06		0.95			
		0.90		0.97		$\langle \rangle$		0.90		0.75		
	0.69		\diamond		0.86		0.86		\diamond		0.66	
0.60		0.68		0.79		$\langle \rangle$		0.80		0.68		0.61
	0.64		$\langle \diamond \rangle$		0.73		0.74		\diamond		0.68	
		0.72		0.82		<rr></rr>		0.92		0.90		
			0.98		0.99		1.02		1.06			
				LOWE	R							
			1.05		1.14		1.21		1.13			
		1.21		1.23		\diamond		1.25		1.23		
	1.22		\diamond		1.22		1.22		$\langle \rangle$		1.22	
1.26		1.16		1.19		\diamond		1.18		1.14		1.22
	1.20		\diamond		1.06		1.06		\diamond		1.17	
		1.15		1.15		<rr></rr>		1.15		1.15		
ookhave U.S. Der	n Scien partmer	ice Assent of Ene	1.14 ociates ergy		1.12		1.13		1.16		BRO	DKHA L LABOR

Br

Summary

Inventories have been developed for the NBSR using MONTEBURNS

- Total of 30 different fuel materials
- Split core between upper and lower halves
- Assumed East-West symmetry
- The MONTEBURNS methodology for calculating inventories invokes some assumptions
 - MONTEBURNS deals with the unsupported fission product problem by reducing material densities
- This requires some adjustments of the inventories before they are used

Problem

- ORIGEN2 calculates the existence of thousands of fission products
- MCNP ENDF/B files have cross sections for only a few radioactive fission products
- MONTEBURNS does not include those fission products when it rewrites the MCNP materials
- Those fission products are lost to the calculation
- Therefore there the end-of-cycle fuel element mass is less than the start-of-cycle mass

