CORE DESIGN FOR NEUTRON FLUX MAXIMIZATION IN RESEARCH REACTORS

Federico E. Teruel and Rizwann-uddin Department of Nuclear, Plasma and Radiological Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA teruel@uiuc.edu; rizwan@uiuc.edu

<u>Objective</u>

Study different core configurations of a pool type multipurpose research reactor to:

- maximize the neutron flux delivered to the reflector,
- produce an acceptable life cycle (~ 40 days),
- allow irradiation positions in the inner reflector.

<u>Reason</u>

The intensity of neutron sources in a research reactor defines types of applications and rates of production. Competitiveness of the reactor.

<u>Outline</u>

- Modern research reactors examples and neutron flux requirements.
- ✓ Comments about FRM-II design.
- ✓ Tools to model neutronic behavior in research reactors.
- ✓ Our simplified model of FRM-II.
- ✓ Alternative model and goals.
- ✓ Compromise solution.
- ✓ Neutron flux levels and life cycle of compromise solution.
- ✓ Summary and conclusions.

Modern research reactors

FRM-II (Germany)

OPAL (Australia)*

*Under construction

Research reactors overview

	Flux(th) *10 ¹⁴	Fuel	Enrichment	Power (MW)	Flux(th) *10 ¹³ /MW
HFIR	25.5	U ₃ O ₈ -Al	N/A	85	3.0
FRM-II	8.0	U ₃ Si ₂ -Al	93%	20	4.0
HANARO	5.0	U₃SiAI	20%	30	1.7
JRR-3M	3.0	U ₃ Si ₂	20%	10	3.0
JHR*	7.4	UMo ₇	<20%	100	0.7
OPAL**	3.2	U ₃ Si ₂ -Al	20%	20	1.6

*Projected **Under construction

- Single, cylindrical fuel element (5.9cm to 12.15cm, 70cm height).
- 113 involuted, curved fuel plates.
- uranium silicide-aluminium dispersion (1.5g/cm³ and 3.0g/cm³).
- Enrichment factor 93%.
- Life cycle 52 days.

<u>Computational tools to accurately model neutronic behavior of</u> <u>research reactors</u>

MCNP simplified model of FRM-II

- Core modeled as an homogeneous mixture,
- Reflector modeled without any facilities,
- Angular symmetry (non-θ dependence). CR Meat AL HW 1.4E+15 — Thermal 1.2E+15 Neutron Flux (n/cm2/sec) — Fast FRM-II 1.0E+15 ۲ 8.0E+14 6.0E+14 4.0E+14 2.0E+14 0.0E+00 12 18 24 30 36 42 6 0 Radius (cm)

Basic variations of FRM-II model

Constrains

- Inner irradiation zone.
- Relatively long fuel cycle (> 40 days).
- 20 % enrichment

Assumption

- 10 MW of power.
- Meat U₃Si₂ of 4.8 gr/cm³, 20 % enrichment (fresh).
- Outer reflector heavy water.
- Core height 70 cm.
- Core modeled as a homogeneous mixture.

<u>Goals</u>

- Unperturbed thermal peak greater than 4E14 n/cm²/sec (equivalent to 8E14 n/cm²/sec for 20 MW).
- Inner irradiation zone greater than 350 cm² (10 cm radius).
- Life cycle greater than 40 days.

Basic variations of FRM-II model

Parameter: inner and outer core radii

Case	l I	Ш	Ш	IV	1	V	VI
Inner core radius (cm)	15	15	15	14	ł	16	17
Outer core radius (cm)	20	19	18	17	,	20	20
Multiplication factor	1.15	1.10	1.03	1.0	2	1.12	1.07
U5 ratio to FRM-II (Kg/Kg)	1.4	1.1	0.8	0.7	7	1.1	0.9
MTF (*10 ¹⁴)	2.31	2.74	3.06	3.11		2.58	2.77
Case	VII	VII		IX		X	XI
Case Inner core radius (cm)	VII 20	VIII 19		IX 15	1	X 5-16	XI 15-15.5
Case Inner core radius (cm) Outer core radius (cm)	VII 20 23	VIII 19 20		IX 15 16	1	X 5-16 9-20	XI 15-15.5 19.5-20
Case Inner core radius (cm) Outer core radius (cm) Multiplication factor	VII 20 23 1.12	VIII 19 20 0.8 7	7 (IX 15 16 . 78	1 1 ,	X 5-16 9-20 1.00	XI 15-15.5 19.5-20 0.86
Case Inner core radius (cm) Outer core radius (cm) Multiplication factor U5 ratio to FRM-II (Kg/Kg)	VII 20 23 1.12 1.0	VIII 19 20 0.8 0.3	7 (IX 15 16 0.78 0.2	1	X 5-16 9-20 1.00 0.5	XI 15-15.5 19.5-20 0.86 0.1

Conclusion: for acceptable life cycles (i.e. greater than 40 days), maximum thermal neutron fluxes are far lower than the value expected as a goal.

A compromise solution, asymmetric core model

- Thin cores produce high fluxes,
- Thick cores produce acceptable life cycles,
- Multipurpose Reactor \rightarrow high thermal fluxes in one region of the reflector,
- Other applications do not require such high thermal fluxes.

Asymmetric core model

Parameters:

- Thick core section inner radius
- Thick core section outer radius
- Thin core section inner radius
- Thin core section outer radius
- Angular aperture thin section

Case			III	IV	V	VI	/ VII \
Thick core inner radius (cm)	15	15	15	16	15	16	16
Thick core outer radius (cm)	20	20	20	22	20	22	22
Thin core inner radius (cm)	17	17	17	18.5	17	18.5	16
Thin core outer radius (cm)	18	18	18	19.5	18	19.5	17
Angular aperture thin section (°)	90	120	150	150	180	180	180
Multiplication factor	1.11	1.09	1.08	1.15	1.07	1.11	1.12
MTF center thin section (*10E14)	2.2	2.12	1.96	1.74	1.73	1.56	0.87
MTF center thick section (*10E14)	3.01	3.57	4.04	3.78	4.4	3.86	4.05

Asymmetric core (case VIII)

Core thick	Inner radius (cm)	16		leat	
section	Outer radius (cm)	22		ight water	
Core thin section	Inner radius (cm)	16	- H	leavy water	
	Outer radius (cm)	17			
Total core	Volume (cm ³)	2870)		
	Height (cm)	70			
	U5 (kg)-20%	4.71			
Inner irradiation	External radius (cm)	7			
zone					
	Case		k _{eff}		
Critical with Hf-CR from 11.0 to 11.4 cm			1.000	Life c	vcle of 41 days with
Base case			1.162] → margi	inal reactivity of
Black absorber from 0-7 cm			1.080	6.8%	(∆k/k)
Be from 0-7 cm			1.230		
Heavy Water from 0-7 cm			1.231		

Asymmetric compact core with shorter life

Core thick	Inner radius (cm)	6
section	Outer radius (cm)	14
Core thin section	tion Inner radius (cm)	
	Outer radius (cm)	7
Total core	Volume (cm ³)	19022
	Height (cm)	70
	U5 (kg)-20%	3.12

Case		
Critical with Hf-CR from 11.0 to 11.4 cm	1.000	
Base case	1.152	
8 holes of 2 cm of diameter of light water	1.141	

Life cycle of 25 days with marginal reactivity of 5.8% (Δk/k)

Summary and conclusions:

- The asymmetric design allows to reach an unperturbed thermal peak per unit power comparative to the FRM-II one. In addition, using L.E.U, the life cycle is conservatively estimated in 41 days.
- The asymmetric model produces a high thermal neutron flux zone (~ 3.9E14 n/cm²/sec), moderate thermal neutron flux zone
 - (~2.4E14 n/cm²/sec), and low thermal neutron flux zone
 - (~1E14 n/cm²/sec).
- The design also presents a inner irradiation zone to irradiate materials that could be designed to be characterized by a higher fast/thermal flux ratio than the one obtained in the reflector.

The asymmetric compact core produces a high thermal neutron flux zone (~4.9E14 n/cm²/sec), moderate thermal neutron flux zone (~4.0E14 n/cm²/sec), and low thermal neutron flux zone (~3.2E14 n/cm²/sec). The life cycle is estimated in 25 days.

<u>Usage of Research Reactors</u>

	Purpose	Requirements
Cold Neutron Source	Structure research, molecular motion	High flux, CNS, beams
Thermal Neutron Source	Structure research, radiography, neutron therapy	High flux, beams
Fast and hot neutron sources	Fast neutron irradiation, neutron therapy	High flux, hot source or fissile material, beams
Isotope production	Production of radioisotopes for medical, military, and scientific purposes.	Irradiation positions
Industrial processing	Neutron transmutation doping	Location for huge crystals, stable and homogeneous flux
Material testing and irradiation	Test and design of materials for use in fission and fusion reactors.	In core and out core testing locations
Teaching and training applications	Reactor theory, dosimetry, instrumentation	

Burnup calculations I

Core divided in 36 different regions, Steps for MCNP calculation every 2 days, Error in keff = 0.005, two SD

1

Burnup calculations II

Flux in cubes of 3 cm edges (too big),

Critical calculation, then the peak is due to CR withdraw,

Power in south region is slightly decreasing and power in north region is increasing with burnup

<u>Fast flux II</u>

Thermal flux comparison

Area in z = 0 plane (cm²)	FRM-II simplified model	AM-IX	AM-IX areas as % of FRM-II
>2.0E13 n⋅cm ⁻² s ⁻¹ MW ⁻¹	7439	8236	110
>3.0E13 n⋅cm ⁻² s ⁻¹ MW ⁻¹	3921	4210	107
>3.5E13 n⋅cm ⁻² s ⁻¹ MW ⁻¹	2413	2584	106
>4.0E13 n⋅cm ⁻² s ⁻¹ MW ⁻¹	_	1378	-

Burnup calculation compact core

1