

TRTR-2005 / IGORR-10 Joint Meeting September 12-16, 2005 - Gaithersburg, MD

AREVA

EXPERIMENTAL MATERIAL IRRADIATION IN THE JULES HOROWITZ REACTOR

S. Carassou, P. Yvon, M. Auclair

G. Panichi, F. Julien, S. Maire, L. Roux

S. Tathinen, P. Moilanen

Contact Point: pascal.yvon@cea.fr

TRTR-2005 / IGORR-10 Joint Meeting, September, 12-16, 2005, Gaithersburg, MD

Presentation of the material test device for large flux and low gradients

Sample holder for controlled biaxial stress experiment

Device for large fast flux and small gradients

Picture without sample holder

Heating zone:

- electric furnaces

- good thermal insulation between inside of the device and water of the core

Electromagnetic pump for creating a stream of Sodium-Potassium alloy inside of the device

Cooling zone (Exchanger between NaK and cooling water of the core):

- area far away from neutron and gamma flux

- high conductivity between device and cooling water of the core

hot channel from the cold one

Tube to separate the

Gas gap (thermal insulation)

From classical device to new device concept

Sclassical irradiation device

- \checkmark Heat removal only by radial conduction in NaK
 - Thigh thermal gradient inside of the specimen
 - Important local variation of temperature on specimens near the structures or when touching them

OK when reasonable gamma heating But not in the core of JHR

Setting small gradients & large damage

 ✓ Forced convection of sodium-potassium alloy by the use of an electromagnetic pump, adapted to the size of the device.

☞ NaK temperature 250°C to 600°C

The NaK flow rate $1m^{3}/h$ to $2m^{3}/h$ (pressure 2 bar)

 $\$ *Electromagnetic pump power* $\sim 2.5 kW$

Total electric power ~36kW

Typical example of current needs For a better knowledge of mechanical behavior under flux, testing samples with different biaxiality ratios (Zr cladding : Anisotropic and textured)

> Tubular samples (PWR cladding, other specimens with similar dimensions) with internal pressure and axial Force (tension/compression)

Example of experiment to be performed

Irradiation Creep with stress increments and control of the biaxiality ratio

If several specimens in series (stressed and unstressed) :

•Different initial stress (thinned specimen) for same biaxiality ratio

•Growth determination (with unstressed specimens)

• Effect of material evolution under irradiation (hardening, etc...) : stress i specimen 1 = stress i+1 specimen 2

Specifications 1/2

✓ Specimens

Tubular samples (PWR cladding, other specimens with similar dimensions) zirconium alloy

✓ Stress monitoring

Application of internal pressure associated to tensile (or compressive) load

- \mathcal{T} Control of the biaxiality ratio ($\sigma_{ax} / \sigma_{circ}$).
- TRange of stress up to 500 MPa
- Possibility of complex loading path : creep tests including stress increments or decrements, hold at a given strain (relaxation), ...
- ✓ Strain measurement
 - The situ measurement
 - TAxial and diametrical strain
 - Tiametrical strain at different axial locations (profile)
 - *F* Accuracy of strain measurements

Specifications 2/2

- ✓ Neutron flux (spectrum, gamma heating ...)
 - $rac{P}{P}$ Relatively high flux requested 2 to 3 10¹⁴ n.cm⁻².s⁻¹ (E>1MeV)
 - *good accuracy in final target fluence (fluence monitors counting, on-line instrumentation,)*
 - The Accurate dosimetry capability needed
- ✓ Temperature control and accuracy
 - $\ensuremath{\mathfrak{F}}$ Range of temperature 300 to 400°C
 - *©* circulation of coolant to avoid thermal gradients

Pneumatic m

- ♥ load system
 - ✓ Hoop stre
 - ✓ Axial stre
- Axial measu
- Diameter meLVDT (unde

Critical features: influence of the measurement system on the cladding temperature

AREVA

Cladding sample irradiation temperature taking into account device conceptual design and measurement system

Thermal calculation

Acceptable influence of the measurement system on the cladding temperature

- \checkmark in regards to the very local aspect of the "hot spot", the small strain perturbation
- \checkmark And taking into account axial displacement of probes

Conclusions

- Major challenge of controlling temperature and limiting gradient under large flux will be addressed by the use of a NaK pump.
- Solution State State
 - ✓ Development of compact solutions to control axial stress and internal pressure stress
 - ✓ Development of devices to measure on line length and diameter changes
- Technological development of devices & components from
 2006 within European Union collaboration (6th Framework
 program and bilateral collaboration)