

Analysis of an LEU Fuel with Spatially-dependent Thickness in Two Dimensions

R. T. Primm, III and R. J. Ellis

Presented by Trent Primm Research Reactors Division primmrtiii@ornl.gov 865-574-0566

Presented at the 2007 Joint International Topical Meeting on Research Reactor Fuel Management (RRFM) and International Group on Research Reactors (IGORR) Lyon, France March 14, 2007

This fuel development study concerns the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory, USA.

Will present:

- History/purpose/scope of study
- Description of HFIR with comparison to High Flux Reactor (HFR), <u>Petten</u>, The Netherlands
- Limits of study
- Methods, models, and results
- Conclusions and future work

The purpose of the study is to investigate the conversion of the HFIR from HEU to LEU

RERTR Implementation Office of Global Threat Reduction

- Ensure that the ability of the reactor to perform its scientific mission is not significantly diminished.
- Work to ensure that an LEU fuel alternative is provided that maintains a similar service lifetime for the fuel assembly.
- 3) Ensure that conversion to a suitable LEU fuel can be achieved without requiring major changes in reactor structures or equipment.
- 4) Determine, to the extent possible, that the overall costs associated with conversion to LEU fuel does not increase the annual operating expenditure for the owner/operator.
- Demonstrate that the conversion and subsequent operation can be accomplished safely and the LEU fuel meets safety requirements.

The Petten (HFR) reactor recently converted from HEU to LEU

- In preparing to study HFIR conversion, useful to study successful, similarly sized reactor
- Excellent presentation on Petten conversion provided at IGORR meeting, 2005 by P. M. Stoop
- Familiarity of RRFM with local reactor; easier to understand the HFIR challenge if compared to Petten

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

World distribution of research reactors; from B. J. Jun, HANARO, KAERI

Some physical characteristics of the reactors are similar

HFIR (Oak Ridge)

- Power level 85 MW
- Reflector Be
- Coolant H₂O
- Startup 1965
- Lifetime 2035-2040
- Cycle length 26 days
- Plate-type, Al clad fuel
- Principal uses radioisotopes; neutron source to beam tubes; materials irr.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

HFR (Petten) 45 MW Be H₂O 1961 beyond 2015 28 days - same -- same -

There are no "fuel shuffling" operations at HFIR

UT-BATTELLE

U. S. DEPARTMENT OF ENERGY

HFIR plates have a variable fuel thickness

Dimensions (mm)				
HFIR		Petten		
0.23-0.69	9 Fuel	0.51		
0.76	Fuel+fille	er -		
0.25	Clad	0.38, 0.57		
1.27	Total	1.27, 1.65		
508	Fuel leng	oth 600		

Studies considered design options for the "region between the clad" only (criterion 3 from RERTR program).

• No changes to:

- Physical dimensions
- Geometry
- Clad material or thickness
- Fuel filler material (Al or Al-Si)
- Fuel cycle length (~26 days)
- Power level (85 MW); hence average heat flux
- Margin of safety in TSR bases
- Coolant flow rate
- Subcriticality of elements
- Storage/handling methods

Elements must "look the same"

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

RERTR Implementation Ensure that the ability of the reactor to perform its scientific mission is not significantly diminished. Work to ensure that an LEU fuel alternative is provided that maintains a similar service lifetime for the fuel assembly. Ensure that conversion to a suitable LEU fuel can be achieved without requiring major changes in vactor structures or equipment. Determine, to the extent possible, that the overall costs associated with conversion to LEU fuel does not increase the annual operating rependiture for the overafore. Demonstrate that the conversion and subsequent operation can be accounted by the LEU fuel mets where requirements.

Performance goals to insure scientific mission maintained are to retain currently achieved thermal (<0.625 eV) flux values for:

Only the interior of the fuel plates is changed – U_3O_8/AI to U-10/Mo

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Petten uses LEU₃Si₂

- U₃Si₂ density too low for HFIR; shortens cycle length by ~50%
- First consider only radial grading as in the current HEU design
- Consider U-10Mo monolithic fuel; determine profile
- With profile, determine requirements for
- dispersion fuel based on U-10Mo

Verified and validated methods and data used for support of current HFIR operations also used for LEU analyses

Fuel profiles were found that permitted HFIR operation with LEU at 85 MW

The LEU dispersion case that satisfies criteria has a much higher fuel/Al ratio than current HEU

- U-7wt%Mo Fuel (denser than U-10Mo)
- 55 volume percent for U-Mo (45 volume percent for AI) [HFIR HEU fuel meat is about 13 volume percent U₃O₈ in AI]
- Uncoated U-7Mo particles (Stabilizing Si in Al matrix surrounding particles)
- Yields 8.7 gU/cm³

Denser fuel reduces flux to the reflector

Note: VENTURE results agreed excellently with MCNP results

Margin to incipient boiling is lowest at the bottom edge of the core

Graph shows relative power densities for this region

Removing ½ the fuel in the top and bottom inch (2.5 cm), both elements, allows operating power to increase to 100 MW

- Flux performance restored to current level
- Constraining point in time may move from BOC to EOC (but slight difference)
- Optimal length yet to be found; optimal shape likely not step function; but fabricator may prefer 2 zones

The maximum heat flux is at BOL and occurs at the outside edge of the outer element at axial midplane

- Local-to-core-average power density is 1.51
- Predicted peak fuel zone temperature is 137°C
- Surface heat flux is 322 W/cm²
- Heat flux in RERTR-6 reported as 100-200 W/cm²
- Heat flux in RERTR-7 reported as expected to be >300 W/cm²

Performance parameters for LEU are less than for current HEU core at 85MW but would be restored at 100 MW

Location	LEU		% Difference [100*(LEU-HEU)/HEU]	
	BOL	EOL	BOL	EOL
HB2 beam tube	9.625 × 10 ⁺¹⁴	1.267 × 10 ⁺¹⁵	-3.85	-11.58
ISVXF-7 (activation)	8.086 × 10 ⁺¹³	1.061 × 10 ⁺¹⁴	-4.22	-10.84
EF3 (activation)	3.192 × 10 ⁺¹³	4.100 × 10 ⁺¹³	-4.97	-10.09

Presence of ²³⁸U generally increases safety margins

Des stiriter as officient	LEU		HEU	
Reactivity coefficient	BOL	EOL	BOL	EOL
Doppler (300K to 500K)	-2.42 × 10 ⁻⁵	-2.38 × 10 ⁻⁵	-2.41 × 10 ⁻⁶	-2.46 × 10 ⁻⁶
	%ΔK/K/C	%ΔK/K/C	%ΔK/K/C	%ΔK/K/C
Void (10%)				
Outer element	–0.0793	–0.0679	–0.0765	-0.0558
	%∆K/K/%v	%ΔK/K/%v	%ΔK/K/%v	%ΔK/K/%v
Inner element	<mark>-0.156</mark>	–0.136	–0.185	-0.135
	%ΔK/K/%v	%∆K/K/%v	%∆K/K/%v	%ΔK/K/%v
Central target region	+0.0211	+0.0266	+0.0265	+0.0317
	%ΔK/K/%v	%ΔK/K/%v	%ΔK/K/%v	%ΔK/K/%v

Post-shutdown cooling requirement increases for LEU but spent fuel storage cooling unaffected

Decay heat (watts)

Fuel	/Source	Discharge	0.5 year	1 year	5 years	30 years
HEU	Actinide	4.1 × 10 ⁺³	3.9 × 10 ⁻¹	3.9 × 10 ⁻¹	3.8 × 10 ⁻¹	3.4 × 10 ⁻¹
	FP	4.4 × 10 ⁺⁶	4.6 × 10 ⁺³	1.4 × 10 ⁺³	1.1 × 10+2	4.2 × 10 ⁺¹
	Total	4.4 × 10+6	4.6 × 10+3	1.4 × 10+3	1.1 × 10+2	4.2 × 10 ⁺¹
LEU	Actinide	7.9 × 10+4	1.2 × 10 ⁺⁰	1.2 × 10 ⁺⁰	1.2 × 10+0	1.3 × 10+0
	FP	5.0 × 10+6	4.6 × 10+3	1.4 × 10+3	1.1 × 10+2	4.1 × 10+1
	Total	5.1 × 10+6	4.6 × 10+3	1.4 × 10 ⁺³	1.1 × 10+2	4.3 × 10 ⁺¹

Denser LEU fuel reduces spent fuel dose rate; LEU increases Pu production

Dose rate

(30 years after discharge; rem/hr)

Source	LEU	HEU
Inner element	158	356
Outer element	243	596
HFIR core		
assembled	243	596

LEU – 306 g Pu/cycle; 3 kg per year HEU – 18 g Pu/cycle; 0.2 kg per year

Alternative ideas – it is always easier if the other guy does the work

The cost and time for licensing and/or "permitting" documentation is under study

HFIR LEU documents

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Petten LEU documents

- Licensing project started 01-01-2001
- License renewal request 23-12-2003
- Public hearing 15-03-2004
- Receipt of new license 23-02-2005

"The future's so bright, you've got to wear shades"

Melton Valley Master Plan

