Fast Reactor Technology facing nuclear Energy Sustainable development in China

ZHANG Donghui

张东辉

China Institute of Atomic Energy

中国原子能科学研究院

Content

- Background
- FR and fuel cycle
- FR project in China

Country's Destination of China:

to be a middle-level advanced developed country before 2050

Some countries' primary energy consumption in 2007

(Unit: 10^6 toe)

	Oil	Natural Gas	Coal	Nuclear	Hydro Electricity	Total	Average per capita (toe)
<u>World</u>	3952.8	2637.7	3177.5	622.0	709.2	11099.3	1.94
U.S.A	943.1	595.7	573.7	192.1	56.8	2361.4	8.98
Japan	228.9	81.2	125.3	63.1	18.9	517.5	4.11
Germany	112.5	74.5	86.0	31.8	6.2	311.0	3.81
U.K.	78.2	82.3	39.2	14.1	2.1	215.9	3.70
France	91.3	37.7	12.0	99.7	14.4	255.1	4.36
Korea	107.6	33.3	59.7	32.3	1.1	234.0	5.22
China	368.0	60.6	1311.4	14.2	109.3	1863.4	1.50

Energy requirement in the future (~2020)

Envisaged Primary Energy Production in China for 2050

	Exploitable	Standard Coal	Total Requirement
<u>Energy</u>	<u>In 2050</u>	<u>Equivalent</u> (billion tsce)	<u>(billion tsce)</u>
Oil	<u>0.1×10⁹t</u>	0.45	
Gas	<u>1500×10⁹m³</u>	<u>0.45</u>	
Hydraulic	<u>260~370GWe</u>	<u>0.65</u>	
Coal	<u>3.4×10⁹t</u>	<u>2.50</u>	
Nuclear	<u>240GWe</u>	<u>0.60</u>	
<u>Others</u>	_	<u>0.30</u>	
<u>Total</u>		<u>4.5</u>	<u>4.5</u>

Energy structure of China

Strategy of nuclear power development

Current status of nuclear power

<u>PWR</u>	<u>11 reactors are being operated, 24 are under</u> construction. Many NPP sites are under discussion.
<u>FBR</u>	CEFR is under construction
<u>Fusion</u>	The new fusion facility "EAST" (Experimental Advanced Superconducting Tokamak) was finished and realize the first electricity generation in 2006

"medium- and long-term nuclear power development plan (2005-2020)"

- The plan was passed in principle on March 22, 2006. According to the plan, nuclear power is a strategic energy source and should be actively developed to meet the country's growing demand of energy. The total nuclear power capacity will be up to 40GWe till 2020;
- China has chosen AP1000 as the next generation NPP of China.

China mainland nuclear power plants

<u>NPP</u>	<u>Type</u>	<u>Power (MWe)</u>	<u>Status</u>
<u>Qinshan-1</u>	<u>PWR</u>	<u>300</u>	<u>Operation</u>
<u>Qinshan-2</u>	<u>PWR</u>	<u>2×600</u>	<u>Operation</u>
<u>Qinshan-2+</u>	<u>PWR</u>	<u>2×650</u>	Construction
<u>Qinshan-3</u>	<u>PHWR</u>	<u>2×720</u>	<u>Operation</u>
<u>Daya Bay</u>	<u>PWR</u>	<u>2×900</u>	<u>Operation</u>
<u>Lingao</u>	<u>PWR</u>	<u>2×944</u>	<u>Operation</u>
Lingdong	<u>PWR</u>	<u>2×1080</u>	Construction
<u>Tianwan</u>	<u>PWR</u>	<u>2×1000</u>	<u>Operation</u>
<u>Sanmen</u>	<u>PWR</u>	<u>2×1250</u>	Construction
<u>Yangjiang</u>	<u>PWR</u>	<u>6×1080</u>	Construction
<u>Hongyanhe</u>	<u>PWR</u>	<u>4×1080</u>	Construction
<u>Ningde</u>	<u>PWR</u>	<u>4×1080</u>	Construction
<u>Fuqing</u>	<u>PWR</u>	<u>2×1080</u>	Construction
<u>Fangjiashan</u>	<u>PWR</u>	<u>2×1080</u>	Construction

China National middle-long term science and technology development program(2006~2020)

Fusion

- <u>EAST realized the first</u> <u>electricity generation Sept.</u> 28, 2006 (current>200kA, <u>time>3s);</u>
- Participated the ITER project.

2. FR and Fuel Cycle

• The aim of fast reactor technology in China

- Raise the utility rate of uranium resource;
- Reduce the amount of long life radioactive waste;
- Enlarge the capacity of nuclear power as quickly as possible.

The usage of FBR

Electric Capacity Development Envisaged In China

MA Transmutation Strategy

- <u>The nuclear power could grow to 250</u> <u>GW before 2050 under the co-</u> <u>development of FBR and PWR.</u>
- The MA could be controlled efficiently with FR.

Closed fuel cycle

3. FR Project in China

- <u>R&D Project of 8th five-years plan</u>
- CEFR Project of national "863" High-tech Plan
- Roadmap of fast reactor in China

R&D Project of 8th five-years plan

- The research mainly focused on:
 - Reactor scheme selection study
 - Sodium technology study
 - Thermal Hydraulic and safety study
 - Neutron physics study
 - Structure and material study
 - Fuel study
 - Sodium-water reaction and detection study
 - Important safety related components study
 - Sub-assembly related technical study

CEFR Project of national "863" High-tech Plan

- One of the largest item of China national "863" hi-tech plan.
- The budget is more than 0.325 billion \$;
- <u>Milestones:</u>
 - 1995.12.9, project identified;
 - 1997.11.13, preliminary design approved;
 - 2000.5.30, first pour concrete;
 - 2002.8.15, main building finished;
 - 2004.11.30, detail design finished;
 - 2009.12.30, first physical critical;
 - 2010.12.30, connect to the grid.

Main parameters of CEFR

Parameter	<u>Unit</u>	<u>Value</u>	Parameter	<u>Unit</u>	<u>Value</u>
Thermal Power	MW	<u>65</u>	Primary Circuit		
Electric Power, net	MW	<u>20</u>	Number of Loops		2
Reactor Core			Quantity of Sodium	<u>t</u>	<u>260</u>
<u>Height</u>	<u>cm</u>	<u>45.0</u>	Flow Rate, total	<u>t/h</u>	<u>1328.4</u>
Diameter Equivalent	<u>cm</u>	<u>60.0</u>	Number of IHX per Loop		2
<u>Fuel</u>		(Pu, U)O ₂ (first loading is UO ₂)	Secondary Circuit		
Linear Power max.	<u>W/cm</u>	<u>430</u>	Number of Loop		2
Neutron Flux	<u>n/cm²·s</u>	3.7×10^{15}	Quantity of Sodium	<u>t</u>	<u>48.2</u>
<u>Bum-up, first load max.</u>	<u>MWd/t</u>	<u>60000</u>	Flow Rate	<u>t/h</u>	<u>986.4</u>
Inlet/outlet Temp. of the Core	<u>°C</u>	<u>360/530</u>	Tertiary Circuit		
Diameter of Main Vessel(outside)	<u>m</u>	<u>8.010</u>	Steam Temperature	<u>°C</u>	<u>480</u>
Design Life	<u>A</u>	30	Steam Pressure	MPa	<u>14</u>
			Flow Rate	<u>t/h</u>	<u>96.2</u>

Reactor Block and Main Heat Transfer System

Main heat transfer system of CEFR

Main equipments and systems of CEFR

$\bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet$

Technical continuity of Chinese FBRs

Reactor	<u>CEFR</u>	<u>CDFR</u>	CCFR
Power MWe	<u>25</u>	<u>600~900</u>	<u>1000~1500</u>
<u>Coolant</u>	<u>Na</u>	<u>Na</u>	<u>Na</u>
<u>Type</u>	<u>Pool</u>	<u>Pool</u>	<u>Pool</u>
<u>Fuel</u>	$\frac{\underline{\text{UO}}_2}{\underline{\text{MOX}}}$	<u>MOX</u> <u>Metal</u>	<u>Metal</u>
<u>Cladding</u>	<u>Cr-Ni</u>	<u>Cr-Ni</u> <u>ODS</u>	<u>Cr-Ni</u> <u>ODS</u>
Core Outlet Temp. ℃	<u>530</u>	<u>500-550</u>	<u>500</u>
Linear Power W/cm	<u>430</u>	<u>450-480</u>	<u>450</u>
Burn-up MWd/kg	<u>60-100</u>	<u>100-120</u>	<u>120-150</u>
<u>Fuel Handling</u>	<u>DRPs</u> <u>SMHM</u>	<u>DRPs</u> <u>SMHM</u>	<u>DRPs</u> <u>SMHM</u>
Spent Fuel Storage	<u>IVPS</u> <u>WPSS</u>	<u>IVPS</u> <u>WPSS</u>	<u>IVPS</u> <u>WPSS</u>
Safety	ASDS PDHRS	ASDS+PSDS PDHRS	ASDS+PSDS PDHRS

The preliminary consideration of demonstration reactor

- <u>The main parameters</u>
 - Power: 2100MWt/800MWe;
 - Fuel: MOX;
 - Design life: 40y
 - Construction cost: ~ 2500\$/kW.
 - Safety: Probability of core melt < 10⁻⁶/a; For DBA, Maximum public dose < 0.5mSv For BDBA, Maximum public dose < 5mSv
 - Loading coefficient: >80%
 - Breeding ratio: >1.1;
 - Fuel handling period: 150d.

Technical scheme selection

- <u>MOX fuel, clad and structure material adopting 316 austenitic stainless</u> steel;
- Sodium as the coolant;
- The primary loop adopts pool-type;
- <u>The main heat transfer system use the design sodium-sodium-</u> water/steam;
- The primary and secondary loop with 3 circuit respectively;
- The tertiary loop with one turbine;
- <u>Two set of shut down system, and each one could shut down the</u> reactor with enough margin under the case of one control rod stick out of the core;
- Inherent emergency residual heat removal system;
- Containment;
- Primary sodium system set in the bound of containment.

CDFR Main Parameters (primary)

Parameters	Design Value
Thermal Power	2100 MWt
Electricity Power	800 MWe
Efficient	38%
Load factor	80%
Design life	40y
Fuel type	MOX
Coolant type	Sodium
Primary Loop type	Pool
Average Burn up	66 MWd/kg
Maximum Burn up	100 MWd/kg
Breading ratio	1.1

Parameters	Design Value	
Fuel subassembly number (inner/middle/out/total)	211/156/198/565	
Enrich (inner/middle/out)	19.5%22.1%24.7%	
Liner Power	29.3/49 kW/m	
Diameter of Main vessel	13000 mm	
Thickness of Main vessel	30 mm	
Sodium temperature (inlet/outlet of reactor core)	354/547 ℃	
Sodium temperature (inlet/outlet of IHX)	544/352 ℃	
Flow rate of primary loop	8700 kg/s	
Loop number	3/3	

Reactor Core

图例	说明	数量
\bigcirc	内堆芯燃料组件	211
	中间堆芯燃料组件	156
\bigcirc	外堆芯燃料组件	198
	径向转换区组件	90
	钢反射层组件	178
	硼屏蔽组件	182
\bigcirc	堆内储存阱	188
5	补偿棒	16
SA	安全棒	9
æ	非能动控制棒	3
	调节棒	2

THANK YOU FOR YOUR ATTENTION

