

12th Meeting of the International Group on Research Reactors (IGORR 12) Beijing, China, October 28-30, 2009

Fundamental Research on Molten Salt Reactors

Zhang Dalin, Qiu Suizheng, Su Guanghui

Xi'an Jiaotong University, Xi'an,710049, China

Overview of the Generations of Nuclear Energy Systems

Nuclear Thermo-hydraulic Research Laboratory

Introduction of MSR (2)

- Liquid fuel
- Pressure < 0.5MPa
- Outflow Temperature >700°C
- Brayton cycle

- Solid fuel
- Pressure: 15MPa
- Outflow T: 330°C
- Rankine cycle

Advantages:

- Inherent safety feature
- Excellent neutron economy
- High thermal efficiency 45-50%
- Continuous or in-batch reprocessing
- Non-proliferation

Technology bases:

- Prototype reactors: ARE and MSRE
- Technologies for high temperature reactors:
 Brayton cycles
 Compact heat exchanges
 C-C composities

- > Technology Gaps for MSRs
 - Molten salt chemistry and control
 - Solubility of minor actinides and lanthanides in the fuel
 - Compatibility of irradiated molten salt fuel with structural materials
 - Salt processing, separation, and reprocessing technology
 - Fuel development, new cross section data
 - Corrosion and embrittlement studies
 - Development of tritim control technoldoy
 - Graphite sealing technology and graphite stability
 - Detailed conceptual design studies to develop desig specifications

Fundamental Research on MSRs

• Evaluation of static thermophysical properties

- Fundamental Research on MSRs
- Evaluation of static thermophysical properties
 - ✓ Residual function method

$$M_r = M_{p,t}^* - M_{p,t}$$

$$d\overline{G_i} = RTd(\ln\widehat{f_i})_T$$

• 15LiF-58NaF-27BeF₂ in MOSART

Fundamental Research on MSRs • Neutron physics analysis

Energy-time-space dependent neutronics model

Equation for neutron flux:

$$\frac{1}{v(E)} \frac{\partial \phi(r, E, t)}{\partial t} = S(r, E, t) + \chi_p(E) \int_{E'} (1 - \beta) v \Sigma_f(r, E') \cdot \phi(r, E', t) dE' + \sum_{i=1}^{l} \chi_{d,i}(E) \lambda_i C_i(r, t) + \int_{E'} \Sigma_S(r, E' \to E) \phi(r, E', t) dE' - \Sigma_i(r, E) \phi(r, E, t) + \nabla \cdot D(r, E) \nabla \phi(r, E, t) - \frac{1}{v(E)} \nabla \cdot [\mathbf{U} \phi(r, E, t)]$$
Balance equation for delayed neutron precursors:
$$\frac{\partial C_i(r, t)}{\partial t} = \beta_i \int_E v \Sigma_f(r, E) \cdot \phi(r, E, t) dE - \lambda_i C_i(r, t) - \nabla \cdot [\mathbf{U} C_i(r, t)]$$
Energy integration

Fundamental Research on MSRs Neutron physics analysis

$$\frac{1}{v_g} \cdot \frac{\partial \phi_g}{\partial t} + \frac{1}{v_g} \nabla (U\phi_g) = \nabla \cdot D_g \nabla \phi_g + \sum_{g'=1}^{g-1} \phi_{g'} \cdot \Sigma_{g' \to g} - \phi_g \cdot \Sigma_{r,g}$$
Convective $+ \chi_{p,g} \cdot (1 - \sum_{i=1}^{I} \beta_i) \cdot \sum_{g=1}^{G} (v\Sigma_f)_g \cdot \phi_g + \sum_{i=1}^{I} \chi_{d,g,i} \cdot \lambda_i \cdot C_i$

$$\frac{\partial C_i}{\partial t} + \nabla (UC_i) = \beta_i \cdot \sum_{g=1}^{G} \cdot (v\Sigma_f)_g \cdot \phi_g - \lambda_i \cdot C_i$$

• For MOSART

□ Neutron fluxes

Institute	Codes	k _{eff}	
BME	MCNP <u>4C</u> + JEFF3.1	1.00905	
FZK	2D560gr. + JEFF3.0	0.99285	
NRG	MCNP <u>4C</u> + JEFF3.1	1.00887	
Polito	2D4 gr. + JEFF3.1	0.99595	
RRC-KI	MCNP4B+ENDF5,6	0.99791	
SCK-CEN	MCNPX250	1.00904	
XJTU	NPAC-XJTU	0.99994	

Fundamental Research on MSRs Neutron physics analysis

Delayed neutron precursors

DNPs distribution show

- Drift downsteam with the flow;
- The larger the decay constant, the greater the flow effects.

Fundamental Research on MSRs Neutron physics analysis

The relative power increases (decreases) greatly in short time at beginning, then changes with a certain speed.

The larger the reactivity changes, the greater the initial power generates and the faster the changing speed is.

Fundamental Research on MSRs • Thermal hydraulic analysis

- ✓ ORNL: there was no decisive difference between water and molten fluorides from the flow and heat transfer viewpoint.
 - Computational Fluid Dynamic (CFD) method

$$\begin{aligned} \frac{\partial \rho u_z}{\partial z} + \frac{1}{r} \frac{\partial r \rho u_r}{\partial r} &= 0 \\ \frac{\partial (\rho u_z \cdot u_z)}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho u_r \cdot u_z) &= \frac{\partial}{\partial z} ((\eta + \eta_t) \frac{\partial u_z}{\partial z}) + \frac{1}{r} \frac{\partial}{\partial r} ((\eta + \eta_t) r \frac{\partial u_z}{\partial r}) + S_{u_z} \\ \frac{\partial (\rho u_z \cdot u_r)}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho u_r \cdot u_r) &= \frac{\partial}{\partial z} ((\eta + \eta_t) \frac{\partial u_r}{\partial z}) + \frac{1}{r} \frac{\partial}{\partial r} ((\eta + \eta_t) r \frac{\partial u_r}{\partial r}) + S_{u_r} \\ \frac{\partial (\rho u_z \cdot k)}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho u_r \cdot k) &= \frac{\partial}{\partial z} ((\eta + \frac{\eta_t}{\sigma_k}) \frac{\partial k}{\partial z}) + \frac{1}{r} \frac{\partial}{\partial r} ((\eta + \frac{\eta_t}{\sigma_k}) r \frac{\partial k}{\partial r}) + S_k \\ \frac{\partial (\rho u_z \cdot \varepsilon)}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho u_r \cdot \varepsilon) &= \frac{\partial}{\partial z} ((\eta + \frac{\eta_t}{\sigma_s}) \frac{\partial \varepsilon}{\partial z}) + \frac{1}{r} \frac{\partial}{\partial r} ((\eta + \frac{\eta_t}{\sigma_s}) r \frac{\partial \varepsilon}{\partial r}) + S_{\varepsilon} \end{aligned}$$

Nuclear Thermo-hydraulic **Research Laboratory**

Fundamental Research on MSRs • Thermal hydraulic analysis

3

Ĕ

N

1

Conic design satisfy: -Avoid reverse or stagnant flow -Maximum temperature is low enough

Nuclear Thermo-hydraulic Research Laboratory

Fundamental Research on MSRs • N-T coupling: steady

Fundamental Research on MSRs • N-T coupling: transient

Reactivity increases 100pcm:

Flow mass decreases:

Fundamental Research on MSRs

Exact point kinetic model:

Based on the energy-time-space dependent neutronics model, using **perturbation theory**

$$\begin{aligned} \frac{dp_r(t)}{dt} &= \frac{\rho(t) - \tilde{\beta}(t)}{\Lambda(t)} p_r(t) + \sum_{i=1} \lambda_i c_i(t) \\ \frac{d}{dt} c_i(t) &= -\lambda_i c_i(t) + \frac{\tilde{\beta}_i}{\Lambda(t)} p_r(t) - \frac{(W, \chi_{di}(E)\nabla \cdot [\vec{U}C_i(r,t)])}{K_0} \\ \frac{\partial C_i(r,t)}{\partial t} + \nabla \cdot [\mathbf{U}C_i(r,t)] &= -\lambda_i C_i(r,t) + \beta_i \mathbf{F} \phi(r, E, t) \end{aligned}$$

where:
$$\tilde{\beta}_i = \frac{(W, \chi_{di}(E)\lambda_i C_i(r, t))}{Y}$$
 (Effective fraction of DNPs)

W: Weighted function

Fundamental Research on MSRs
• Neutron physics analysis

- Effective fraction of delayed neutron
 - only considering the neutron importance disregarding the importance of delayed neutron

$$\nabla \cdot D_g \nabla \phi_g^* + \sum_{n=1, n\neq g}^G \Sigma_{g \to n} \phi_n^* - \Sigma_{r,g} \phi_g^* + (1-\beta)(\nu \Sigma_f)_g \sum_{n=1}^G \chi_{p,n} \phi_n^* = 0$$

$$\tilde{\beta}_{i} = \frac{(\phi^{*}, \beta_{i}\chi_{di}(E)F\phi)}{(\phi^{*}, \chi(E)F\phi)}$$

• For MOSART

Velocity	۵p	Å	β_2	β_3	ß4	β_{5}	β_i	β_{eff}	β_{loss}	β_{loss} /
	[pcm]	[pcm]	[pcm]	[pcm]	[pcm]	[pcm]	[pcm]	[pcm]	[pcm]	$\beta_{\rm eff,static}$
Static	0.0	7.8	77.2	54.9	118.1	61.0	20.8	339.8	0.0	0.0 %
Flate	-115.2	3.7	37.3	28.9	78.4	56.4	20.5	225.2	114.6	33.7%
Parabolic	-131.8	3.6	36.4	27.1	69.3	53.0	20.1	209.5	130.3	38.4%
RRC-KI	-143.4	2.8	29.4	24.1	68.5	53.1	19.9	197.8	142.0	41.8%
XJTU	-127.0	3.6	36.3	27.5	70.5	53.5	20.1	211.5	128.3	37.8%

Fundamental Research on MSRs
Safety analysis

 Comparison of modeling options for delayed neutron precursor movement in molten salt reactors

Conclusion Remarks

- We studied the static thermophysical properties, neutron physics, thermal hydraulics, N-T coupling and safety characteristics by founding theoretical models and designing micro-computer codes.
- The established models are applied to MOSART, the results of which demonstrate the validation of the models.
- MOSART is a promising reactor with inherent safety (negative temperature coefficient, flow effects...).

Nuclear Thermo-hydraulic Research Laboratory

