

The progress of CARR's neutron imaging facilities

Hongli Wang, Songbai Han, Lijie Hao, Meimei Wu, Dongfeng Chen, Yuntao Liu, Kai Sun 2009.10.28

China Advanced Research Reactor (CARR)

Key Parameters

• 60 MW

- Max undisturbed thermal neutron flux (n•cm⁻²•s⁻¹)
 - 1x10¹⁵ (at reactor core)
 - 8x10¹⁴ (at heavy-water reflector)
- 19.75 wt% U²³⁵ enrichment

Some examples of neutron imaging applications

Neutron imaging reveals the rubber o-ring and adhesive inside metallic body

Neutron Tomography

interior heat conductor

Thermal and Cold Neutron Imaging Facility Location

Thermal Neutron Imaging Facility

Design Parameters of Thermal Neutron Imaging Facility

- CARR reactor: 60 MW
- Maximum of thermal neutron flux at sample :3x10⁸n cm⁻²·s⁻¹
- Source-object distance: 10 m
- Measurement position (L): 3m, 6m, 9m
- L/D: 50~9000
- Cd-ratio : >100
- $n/\gamma :> 1.0 \times 10^{6} \text{ n cm}^{-2} \cdot \text{mR}^{-1}$
- Beam size at sample position : 250 mm x 250 mm
- Desired resolution :0.15mm,

The parameters of Thermal Neutron Imaging Facility

D (cm)	L (cm)	L/D	Neutron flux at sample (n cm-2·S-1)	Cd-ratio
6	900	150	2.3×10 ⁸	>100
	600	100		
	300	50		
4	900	225	1.0×10 ⁸	>100
	600	150		
	300	75		
2	900	450	2.5×10 ⁷	>100
	600	300		
	300	150		
1	900	900	6.3×10 ⁶	>100
	600	600		
	300	300		
0.1	900	9000	6.3×10 ⁴	>100
	600	6000		
	300	3000		

Flight Tube System

Beam Limiter

The beam limiter is installed at the end of the flight tube. It consists of four boral aluminum plates that can be driven independently into the neutron beam

Sample tables

The large rotation table

The small rotation table

CCD Camera

Shielding Gate

Cold Neutron Imaging Facility

Dr. Meimei WU, 3 staffs

Diaphragm

Flight tube

flight tube

Beam limiter

Build a tight cooperation in the near future!

