

Multiple purpose research reactors for the 21st century

Prof. Dr. Winfried Petry, Scientific Director of Forschungsneutronenquelle Heinz Meier Leibnitz (FRM II), Technische Universität München

Technische Universität München

Multiple purpose research reactors for the 21st century

Prof. Dr. Winfried Petry Scientific Director Forschungsneutronenquelle FRM II, Technische Universität München

Research reactors for what?

- Materials testing, fuel development, components testing
- Zero power reactors
- Generation IV
- Training
- Radiosotopes
- Irradiations, Si-doping, NAA, PGAA, ...
- Gain, enlarge (or keep) knowledge in nuclear technology
- Beam tube experiments, fundamental & science
-

Answer depends on the particular needs!

- Country with mature nuclear industry playing on the world market
- Developing country, which wishes to build nuclear power plants
- Country steps out of nuclear power
- Nuclear medicine needs isotopes

In any case a well maintained research reactor is an investment for > 40 years!

- During > 40 years needs may change
- Structural materials will suffer under irradiation, fatigue ...
- The construction has to foresee changes ...
- A RR must be reparable, easily, each part!
- An environment for handling strong radioactive sources is needed

Involve your future users in the definition, construction, operation ...

- Build the RR near to your users, near to universities, scientific laboratories, ...
- Is there a suitable infrastructure to reach the RR and to transport strong radioactive sources?

Involve the greater public, explain, be transparent,

- RRs reactor must be accessible to the larger public at (almost) any time!
- Make all problems of the nuclear facility public, immediately, don't hide anything!

A multiple purpose RR may satisfy most of your needs

- ... without sacrifices on the performance of the different tasks.
- Diversity!
- A multiple purpose RR should be a user facility.

A few decisions have to be taken

- $\Phi_{\rm th}$ > or < 3 x 10¹⁴ cm⁻²s⁻¹?
- Inverted geometry?
- D₂O moderator or H2O/Be reflector?
- $D_2^{-}O$ much more expensive, Tritium emission!

Campus of the TUM in Garching near Munich

Foresee plenty of possibilities for extensions

Experimental hall

21 instruments operational9 instruments under construction

7 thermal 19 cold 1 ultracold 1 hot 1 fast 1 positrons

30 total

Instruments are operated by user groups: JCNS, GKSS, HZB, MPQ, many universities

Neutron guide hall

SPHERES

MARIA

PGAA

MEPHISTO

NSĘ

H

TOF-TOF

NREX+

The cold neutron source

Liquid deuterium moderator Volume moderator vessel 25 liters Volume of liquid $D_2 \sim 13$ liters Temperature 25 K

3 beam tubes for cold neutron experiments 1 vertical beam tube is not in use Cooling power total $\sim 6 \text{ kW}$ in liquid D₂ 2.7 kW

E. Gutsmiedl, Päthe, Chr. Müller, A. Scheuer

Measurement of the cold neutron spectral Flux at 20 MW

Perfect agreement between measurement and calculation

A. Röhrmoser, K. Zeitelhack

The hot source

Hot graphite moderator heated by gamma radiation

Distance from center source to center of core 42 cm

1 beam tube with neutron energies 0.1 - 1 eV

T = 2000°C (measured + calculated)

E. Gutsmiedl, Chr. Müller, A. Scheuer

Graphite moderator of hot source

E. Gutsmiedl, Chr. Müller, A. Scheuer

Beam quality: Fast neutron spectrum

- Thermal neutrons (without converter)
- Beam area: 23x18 cm²
- $\Phi_{\rm th}$: 3.9 x10⁹ s⁻¹cm⁻²
- Fast neutrons (with converter)
- Beam area up to 30x20 cm (multi leaf collimator)
- Φ_f: 3.2 x10⁸ s⁻¹cm⁻²
- Very small thermal neutron fraction
- Filters for adjustment of the n/ y -fraction

Unfolded spectrum

Watt spectrum plus intermediate neutrons

F.M. Wagner, B. Loeper-Kabasakal, H. Breitkreutz, Th. Bücherl, S. Garni

PE-Phantom: Calculated depth dose curves

Surface and near-surface tumours only (head and neck, breast, skin)

H. Breitkreutz , F.M. Wagner, B. Loeper-Kabasakal,

Applications of the fast reactor neutron beam Medical applications ("MedApp")

- FRM (1985-2000): 715 patients, about 2300 fields
- FRM II (since June 2007): 41 patients, about 230 fields (40% curative) MedApp needed a CE-mark + accordance to "Medizin-Produkte" legislation

MedApp: Irradiation response

Figs.: Th. Auberger, Hospital for radiotherapy, TUM

Malignant melanoma, elder patient

Laryngeal tumour, 39-year old patient

Th. Auberger, M. Molls, F.M. Wagner, B. Loeper-Kabasakal

Technische Universität München

Neutron computed tomography and radiography (NECTAR)

Max. object dimension: 80 cm x 80 cm x 80 cm³ Max. burden: 400 kg

F.M. Wagner, Th. Bücherl

NECTAR: Examples

Radiography with n_{fast} of a diffuser

Cut through a 3D-CT of a timber using a collimated neutron beam

central channel - reactor core

d=1m

Dimension: Accuracy: Axial homogeneity Radial homogeneity Residual radioactivity Residual contamination

 \emptyset 200 x 500 mm² $\rho_{meas.} = \rho_{target} \pm 5\%$ $\Delta \rho < 5\%$ $\Delta \rho < 3.5\%$ A/m < 0.09 Bq/g A/S < 0.5 Bq/cm²

Si-doping channel

Smoothening of the neutron flux density by a Ni liner

Handling – semiautomatic irradiation

High voltage DC current transport over lang distances

Siemens AG

Wilfried Breuer, Siemens AG, Power Transmission and and Distribution

Irradiation services

Facility	Sample Conveying	$\Phi_{th}(cm^{-2}\cdots^{-1})$	$\Phi_{th} \Phi_{f}$	Irradiation Period	Positions
Fishing line	manually	1.2·10 ¹³	1.2·10 ³	10 minutes … days	1
Standard Rabbit Irradiation System RPA	pneumatic (CO ₂)	4.8x10 ¹² 7.3x10 ¹³	6.66x10 ⁴ 1.3x10 ³	30 seconds hours	2 × 3
Capsule Irradiation Facility KBA	hydraulic (pool water)	7.7·10 ¹³ 1.3·10 ¹⁴	7.7·10² 3.3·10²	minutes days	2 x 5
Silicon Doping Installation SDA	mechanically automatized	2x10 ¹³	?	10 minutes 1 day	1
control rod position	isotope production	6x10 ¹⁴ fast	-	52 days	1

The world's most brillant thermal positron source

K. Schreckenbach, C. Hugenschmidt

$\Phi_{\text{th. pos.}} = 9 \times 10^8 \text{ cm}^{-2}\text{s}^{-1} \text{ at } \text{E}_{\text{pos.}} = 0 \dots 30 \text{ keV}$

K. Schreckenbach, C. Hugenschmidt

Testing new high density fuel by ion beams

Maier-Leibnitz Beschleuniger Laboratorium heavy ion accelerator

Irradition with 70 MeV lodine ions

U7wt%Mo-Al

- Heavy ion irradiation induces the growth an UMo/Al interaction layer
- Average thickness of interdiffusion layer: 7.6 µm

R. Jungwirth, A. Röhrmoser, W. Schmitt, N. Wiechalla, H. Breitkreutz, Palancher

35

R

Identification of the UAI₃ interdiffusion layer

Heavy ion irradiation simulates the metallurgical processes during in-pile irradiation

R. Jungwirth, A. Röhrmoser, W. Schmitt, N. Wiechalla, H. Breitkreutz, Palancher

Feasability study Mo-99 production at FRM II

Definition of the most suitable irradiation channel

FRM II / IRE W. Fries, H. Gerstenberg, P. Jüttner, C. Müller, I. Neuhaus, A. Röhrmoser

Thermal neutron fluxes at HFRP-tube

FRM II / IRE W. Fries, H. Gerstenberg, P. Jüttner, C. Müller, I. Neuhaus, A. Röhrmoser

Ultra Cold Neutron source @ FRM II

Physics-Department E 18, TUM

Expected performance of UCN source

Physics-Department E 18, TUM

Names to be mentioned

- Prof. Dr. Wolfgang Gläser
- Prof. Dr. Klaus Böning
- D. Anton Axmann
- Gert von Hassel
- Prof. Dr. Klaus Schreckenbach
- Guido Engelke
- Dr. Ingo Neuhaus
- •