A Second Liquid Hydrogen Cold Source for the NIST Research Reactor

P. Kopetka, M. Middleton, R.E. Williams and J. M. Rowe NIST Center for Neutron Research

Presented at the 12th Meeting of the International Group on Research Reactors, IGORR-12 Beijing, China October 27-31, 2009

The Nuclear Regulatory Commission has renewed the NBSR operating license for 20 years!

- NCNR Expansion Project: 2007 2012
- A second liquid hydrogen cold source is needed.
 - Design Calculations
 - Thermal-Hydraulic Tests
 - Safety / Operation
- Conclusion

Expansion of Cold Neutron Facilities

MACS* moved to BT-9 to make room for new guides.

*Multi-Axis Crystal Spectrometer

Five-year plan funded by American Competitive Initiative ~\$100 M

5 new guides, at least 6 instruments

New guide hall nearly doubles space

Technical Support Building for sample environment, machine shop, conference room and offices.

New NCRN Guide Hall Construction: Looking East from Cooling Tower (October 19, 2009)

Inside the New Guide Hall Structure (October 19, 2009)

Reactor Shutdown for Expansion: March 2011 – January 2012

- 1. Install BT-9 CNS and move MACS.
- 2. Relocate Secondary Cooling System pipes and pumps to new pump house.
- 3. Drill holes in confinement and install guides, shields, and instruments.
- 4. Replace control room console with digital control console.
- 5. Modify Thermal Shield Cooling System.

Existing LH₂ Cold Source, In-pile Neutron Guides

A second LH₂ source is being developed as part of the NCNR Expansion Initiative

- MCNP calculations used to estimate neutron performance and heat load.
- "Pee Wee" has an 11cm ID, and a 0.5-L volume, 4.5-cm thick.
- Gain in brightness of about 1.7 compared to Unit 2.
- Flux perturbations lower near BT-9 compared to large CT
 - BT-9 ~ 1.5x10¹⁴
 - CT ~ 1.0x10¹⁴

Calculated Nuclear Heat Load (MCNP) of the BT-9 Cold Source

(Watts)	LH ₂	AI
	(27 g)	(141 g)
Neutrons	33	1
Beta Particles	-	29
Gamma Rays*	26	74
Totals	59	104

163 Watts

BT-9 source can be added to the existing refrigerator load of 1200 W.

* Used ²³⁵U cross sections with enhanced gamma-ray production to simulate f.p.

Side View of BT-9 Cold Source

Pee Wee:

14.6-cm OD water jacket

It will have its own H₂ tank.

Control independent of Unit 2.

"Piccolo" phase separator

Status:

T-H tests complete

Cooling water flow tests complete

Pressure tests of moderator chamber and He containment complete

Cryostat Assembly being fabricated

Thermal-Hydraulic Tests

- Small vessel very unlike Unit 2.
- Same geometry, but used R-134a at 287 K and 0.48 MPa.
- Same ratio of liquid-to-vapor densities expected in CNS.
- 1200 W to get same volume flow rate expected in CNS.
- Demonstrated stable operation at 3600 W! Never emptied.
- Void fraction determined using 60-keV gamma-ray transmission measurements: voids ~ 13%
- Piccolo-type phase separator brings liquid level to the top of the vessel.

Unit 2 is passively safe, simple, and reliable. Same safety philosophy for Pee Wee.

- A thermosiphon is the simplest way to supply the source with LH₂.
 - Cold helium gas cools the condenser below 20 K.
 - Hydrogen liquefies and flows by gravity to the moderator chamber.
 - Vapor rises to the condenser and a naturally circulating system is established.
- Thermal hydraulic tests showed a thermosiphon could safely remove at least 2200 watts.
- The system is closed to minimize hydrogen gas handling.
- All system components are surrounded by He containments.

Liquid Hydrogen Thermosiphon

Safety Analysis: BT-9 Accidents Bounded by Existing Source

- Unit 2 accident scenarios analyzed for BT-9 source (NISTIR-7352, Chapter 8):
 - Loss of Insulating Vacuum
 - Leak of air and H₂ into vacuum vessel
 - Release of H₂ into Confinement building
 - Detonation of a stoichiometric mixture of air and H_2 in the moderator chamber.
 - Maximum Hypothetical Accident Severed vacuum line, LH₂ reaction with solid O₂ (bounded by measurements of Ward, et al.)

CNS Tests and Quality Assurance

- Hydrostatic pressure tests to failure on prototype vessels.
 - Moderator Vessel ~ 5 MPa
 - He Containment Vessel ~ 9.8 MPa
- Thermal hydraulic tests of the thermosiphon using R-134a as the working fluid
- Leak test vessels, piping $< 10^{-9}$ cc-He/sec.
- H₂ system entirely welded. Welds within the biological shield are radiographed.
- Final pressure tests at 125% of working pressure (as per ASME Code).

Cryostat Assembly

D₂O Cooling Lines and Distribution Plenums

Inpile Assembly

The plug provides shielding and supports the cryostat assembly.

A diverging beam of cold neutrons is provided for MACS.

Installation of the Cryostat Assembly in the BT-9 Beam Port

Refrigerator Load Lines for the Addition of Pee Wee

Approximate Locations of Major Components of the BT-9 Cold Source

BT-9 CNS Moderator Chamber (11.3-cm OD)

BT-9 CNS Helium Containment Jacket (~1 meter long)

Cold Source Parameters

	Existing Source	BT-9 Source
	(Unit 2)	(Pee Wee)
Geometry	Elliptical Annulus	Disk
Diameter (cm)	32 x 24	11
Thickness (cm)	2 – 3	4.5
LH ₂ Volume (L)	5.0	0.45
LH ₂ Mass (g)	320	27
Al Mass (g)	2840	140
Ballast Tank	2.0	0.38
Volume (m ³)		
H ₂ Inventory (g)	720	130

Like Unit 2, PeeWee will operate between 0.1 MPa (20.4 K) and 0.4 MPa (warm).

Conclusion

- A second cold source is being built for the spectrometer, MACS, displaced by the NCNR expansion project.
- Thermal-hydraulic tests have demonstrated the feasibility of operating it as a thermosiphon.
- Existing refrigerator and control system can accommodate the new source.
- Accident scenarios are bounded by Unit 2
- The source will be installed in 2011.

