DE LA RECHERCHE À L'INDUSTRIE

The Jules Horowitz Research Reactor

Experimental devices and first orientations for the

experimental programs

C Gonnier, J Estrade, G Bignan, B Maugard

Jules Horowitz 1921-1995 Pioneer and leading expert in nuclear physic

www.cea.fr

Jules Horwitz Reactor: The CONTEXT

Context (needs and safety standards) => specific technical choices for the JHR

JHR general design : a 100MWth pool type light water MTR optimized for fuel and material testing

JHR experimental capacity general characteristics of the core

Thermal neutron flux

The core is under moderated => high fast neutron flux in the core and high thermal neutron flux in the reflector

JHR facility & experimental capacity: the Non Destructive Examination Benches

| PAGE 5

Hosting experimental systems (dedicated to LWR fuel testing)

LORELEI fuel testing under accidental conditions EDF (LOCA) Support **ADELINE** For fuel testing under off-normal conditions Power transient (up to 620W/cm), post clad failure fuel behavior, Lift-off experiment... **MADISON** Water level For fuel testing under nominal Device head Penetrations Gas gap contro conditions (short / long term irradiations) ressure tube ouble enveloppe CEA o safety ba Support Clad corrosion CT Clad thermocouple 100 um CL Clad Elongation Displacemen system FL Fuel Stack Elongation Tostrumentation Fuel Plenum Pressur NF Neutron flux Device refrigeration In-pile part Fuel µstructure possible evolution | PAGE 6 Heat exchanger Top seal assembly BWR experiment Fuel samples (60 cm)

• Source Term (FP releases) •Rod thermalmechanical behaviour > Ballooning and clad burst (fuel relocation) > Corrosion at high temperature > Quenching and postquench behaviour

Hosting experimental systems (dedicated to LWR material testing)

An example of sample holder designed for MICA test device Melodie sample holder

MELODIE (MEchanical LOading Device for Irradiation Experiments) experiment performed in OSIRIS – 2015 a challenging experiment ... to prepare MICA instrumented rigs

Creep test with a bi-axial loading experimental device (controlled bi-axial load) and an on-line bi-axial deformation measurement device (sample diameter and length)

- Technical goals
 - Study of LWR cladding 2D irradiation creep
 - 2D : anisotropic material, multiaxial stresses because of gas pressure and PCMI
- OSIRIS environment
 - Sample holder in a CHOUCA capsule similar to MICA
 - 350 °C, static NaK coolant
- Biaxial stress controlled in real time
 - Specimen pressurization → Max pressure 160 bar
 - Push-pull axial loading unit (biaxiality ratio : 0 to 1)
 - Hoop Stress limit: σ_{Θ} = 120 MPa, Axial stress limit: σ_z = 180 MPa
- Online biaxial measurement of creep strain
 - Continuous measurement of axial strain with a 5-wire LVDT
 - Periodical measurement of hoop strain with a diameter gauge
- Partnerships
 - Design and manufacturing of MELODIE : VTT
 - Self-compensated LVDT (axial + DG) : IFE

Towards GEN IV and the "FUSION technologies" (test devices under conceptual design) GEN IV (mainly SFR): adaptation of the Calipso test device Electrical heater Material irradiation : adaptation for high temperature, up to 650°C \rightarrow Fuel irradiation : In-core : long term irradiations (NaK- neutron filters) \rightarrow EM Pump In-reflector : off-normal situations, power and flowrate transients (Na) irradiation Heat exchanger zone MATERIALS Prelimirary calculation - SFR fuel application Adapted design (flowrate : heater : NaK guide tube) Core top lid Exp. Samples FUEL - « direct clad cooling » 400W/cm 600°C Heat exchanger NaK guide tube 300°C

Fusion technologies : Inquiry about the needs => three conceptual designs (FUSERO test devices):

- → <u>Thermo-Mechanical Fatigue</u> testing: study of components submitted to both mechanical strain and thermal strain (from the breeding blanket to divertor tiles).
- → <u>Ceramic testing (for diagnostic windows)</u>; samples bi-axially loaded, analysis of optical properties and sub-critical crack growth.
- → <u>Cryogenic testing</u> for the study of electrical and structural properties of superconducting magnet materials.

Test Devices for « Start Up Tests »

Nuclear Heating Measurements in Material Testing Reactor

Optimization of the strategy for the start-up tests (timing of the tests, accuracy, power level, reactor configuration,....) Analysis of the needs in terms of instrumentation

- Neutron flux and gamma heating mapping, neutron spectra
- fissile power, reactivity measurement, in core void effect evaluation
- THy (flowrate in experimental cavities, in core, in reflector; core under free convection, ...)
- Devices dedicated to the thermal mapping of the reactor structural materials

General objectives

- -Verification of the performances of the facility
- -Verification of the safety parameters

-Accurate determination of the experimental parameters (a challenge: to be as accurate as the present MTRs which started to operate at least 40 years ago...)

Examples of instrumentation developments

Online measurement of the molar mass of the gas inside the fuel rod $(\rightarrow$ fraction of released fission gas)

-	and the second se	
and a summer		
1. 1. 1.		
100mp	and the second second	
	1	
and the second	or the Rest of the Party of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	- talling	the Temperature
	Internel Pr	man Meratanet
	· Frates Ga	Melar Paulins
	· Philippe Str.	the fraction

Sub-miniature fission chambers

lonisation chambers with fissile deposit, external diameter down to 1,5mm, with integrated cable Developed and manufactured by CEA in Cadarache (U, Pu, Np, Am, Cm, Th deposits...)

 \rightarrow Operational in MTR, ZPR, etc.

Measurement technics using optical fibers

Some milestones of the project – civil work

Cez

Examples of some components manufacturing and testing

Exemples of some experimental component manufacturing and testing

Test device heads Cables and pipes connection

under irradiation

"Two-way Filter" (patented), dedicated to trap Na-K oxides and hydrides

CLOE : feedthroughs, flow amplifier, chemistry control ; sample holder, loading system, DCPD,...

Qualification of CALIPSO prototype + NaK process (in SOPRANO facility)

Cez

JHR CONSORTIUM & GOVERNING BOARD

19/03/2007 Signature of the JHR consortium

JHR consortium gathers organizations which take part financially in the construction of JHR (1 representative / organization)

JHR Consortium current partnership: Research centers & Industrial

In some cases, the organization (member of the JHR consortium) is itself the representative of a national consortium which gathers organizations among industry, R&D organizations, TSO, or safety authority

PREPARATION oF EXPERIMENTAL PROGRAMS

Governing Board decision (2012) : creation of **3 Working Groups on fuel, material and technology issues**

- **To provide recommendations and guidance** regarding the <u>reactor experimental capacity</u> including hints on the facilities to be developed versus potential R&D needs and taking into account cost/benefit analysis
- **To gather an international scientific Community** for exchange of information and knowledge including scientific and technical seminars to <u>identify and prioritize the topics of interest</u>,

The preparation of the future JHR program:

- The identification of **open issues** in the field of <u>nuclear fuel and nuclear materials</u> development and qualification,

- The definition of criteria to elaborate "ranking grids" about fuels / materials types, reactor systems

In order to define the experimental objectives and main irradiation conditions, taking into account the availability and constraints of JHR experimental devices.

- And finally the set up of a priority list

The initiation of a first R&D program in a short term future (before the start of JHR) that will be performed in operating MTRs and/or in hot cell laboratories (to gather the International scientific community and set-up a group which will be

operational at the JHR start-up). This first R&D program will have a

continuation in the JHR

See the presentation dedicated to the FIJHOP R&D program proposal

FUEL RANKING GRID ASSESSMENT : FIRST RESULTS and HIGHLIGHTS

Essential / Strong interest on:

- ✓ LWR fuel material basis properties (thermal-mechanical, FP effects. Less interest for new fuel concepts)
- ✓ Fuel element performance : power up-rates
- ✓ LWR fuel in incidental situations : <u>power ramps</u>, failed fuel behavior (also in normal operation)
- ✓ LWR accidental situations : LOCA (less interest for other off-normal situations)
- ✓ Gen IV : Integral fuel performance : SFR type-concept

Lower interest on:

- ✓ Selection/Characterization of Th-based LWR fuels
- ✓ High conversion LWRs
- ✓ Minor actinides transmutation
- ✓ Particle fuel concept (e.g. HTR)
- Driver fuels for research reactors

MATERIAL RANKING GRID ASSESSMENT : FIRST RESULTS - HIGHLIGHTS

Cladding

- \checkmark Cladding behavior : creep test (2D), effect of environment, effect of irradiation on µstructure (embrittlement, creep, hardening (GII&III), swelling (GIV))
- High demanding conditions (both material and fuel issues) \checkmark

Reactor pressure vessel

 \checkmark effect of irradiation on µstructure and mechanical properties

Internals

✓ effect of irradiation and environment (LWR)

Absobers (both material and fuel issues)

✓ effect of irradiation and overall behavior (degradation, swelling,...)

gathering an international scientific community by initiating of a new R&D program (proposal)

See the presentation dedicated to the FIJHOP R&D program proposal

Fuel program

Identification and quantification of the phenomena involved in power transient and having an impact on the clad loading.

Quantification of fission gas release effect

and impact on pellet-clad interaction during a power transient (successive power steps)

First experiment : in ~ 2019 in an existing European MTR ; similar experiment will be carried out on a similar fuel rod in the ADELINE LWR irradiation loop in JHR (>2020)

Material program

Neutron spectrum effect on Stainless Steel behavior

Dose-damage relationship quantified by tensile testing and microstructure characterizations.

Effect of ratio "epithermal + fast" neutron flux / "fast" neutron flux (Rs 2 - 5) on mechanical properties and on µstructure of SS

THANKS FOR YOUR

<u>ATTENTION</u>

Any Questions?

