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Machine condition monitoring is a world wide spread technology to improve predictive 

maintenance, availability, reliability and productivity. Additionally, in nuclear facilities, machine 

condition monitoring is an activity that could be used to improve nuclear safety. However, in 

experimental reactors, commercial technology for machine condition monitoring can be expensive 

and difficult to implement. This disadvantage leads to the development of an economic focused 

system capable of a complete on-line diagnosis for the principal rotating components of the 

experimental reactor, the nearby principal pipe and the decay tank. This requires development of 

sensors, electronics, software and specific knowledge, in order to obtain an early failure prediction 

system. 

In RA-6 nuclear research school reactor, an off-line condition monitoring technology was 

developed in the early 80’s during the startup and has been used since then. In 2008 an on-line 

automatic condition monitoring system was designed and installed, and continues in operation to 

this day. This system is being used as a platform for development of early failure detection 

techniques. The objective of this project was to develop an automatic condition monitoring 

system applied to the RA-6 primary coolant pump. The system is capable of performing the 

identification of the cause of the anomaly detected. Some typical problems in rotating machinery 

like unbalance, misalignment, shock and loose parts are identified by the system. 

In this work a general description of the Condition Monitoring System is presented. Some results 

in anomaly detection issues and dynamical computation feedback are included. The system uses 

anomaly detection algorithms, unsupervised machine learning, to determine unusual behavior 

conditions and it is capable of monitoring these novelties and automatically generates a rule for 

detection using only relevant ranked features. These results show the potential of the on-line tool 

to react to early failure conditions, particularly in the primary coolant circuit including the nuclear 

core. 

 



1.1. INTRODUCTION 

 

Advanced technologies have become available for predictive maintenance of motors, pumps, 

compressors, and rotating machines in general. They are applied in industrial processes for 

equipment condition monitoring, reliability assessment, aging management and safety 

evaluations. It is widely accepted that predictive maintenance can keep equipment in service for 

longer periods of time, while maintaining the same levels of safety and availability.  

The Vibration Division of the Bariloche Atomic Center – National Atomic Energy Commission 

(CNEA) has wide experience on both off-line and on-line condition monitoring techniques. The 

activity of the Division on this subject begun in the period 1984 – 1988 with an agreement for 

technology development between CNEA and IKPH Institute – Hannover Germany. Later, in 2008, 

an on-line monitoring system was implemented on the primary coolant circuit of the RA-6 nuclear 

research reactor based on classical fault detection rules. 

An automatic Condition Monitoring system has been developed based on vibration analysis which 

has ongoing upgrade capabilities using appropriate signal processing and pattern recognition 

techniques. Collected experience stored as digital data related to the dynamic behavior can be 

used in similar machines or processes. Using laboratory tests, valuable information can be 

extracted and implemented in intelligent systems to extend the knowledge base. Also, behavior 

patterns can be analyzed and used to detect in-service machinery problems.   

In order to identify changes in condition or incipient faults the information provided by a condition 

monitoring system must be arranged properly. When an intelligent system has to make a decision 

about a machine or process condition, three large disciplinary groups merge: The mechanical 

analysis of the machine or process (condition analysis, transducer technology, simulation and 

testing); signal processing of the collected data from the transducer; artificial intelligence tools to 

construe the new information collected, enhance the knowledge base and perform a diagnosis 

process.  

1.2. CONDITION MONITORING SYSTEM: RA-6 RESEARCH REACTOR 

 

The primary coolant circuit of the RA-6 research Reactor is equipped with an automatic monitoring 

system, developed and installed by the Vibrations Division. ¡Error! No se encuentra el origen de la 

referencia. shows the system’s block diagram. ¡Error! No se encuentra el origen de la referencia. 

shows the currently installed instrumentation.  

¡Error! No se encuentra el origen de la referencia. shows a detail of the accelerometer mounted 

on the primary pump. This transducer measures the acceleration on the pump bearing housing, 

axial direction. The transducer used is SKF model CMSS 99. Vibration signals from the motor-pump 

set, piping and decay tank have been acquired and analyzed since year 2008 to date. 



 

Figure 1. Condition Monitoring system – Block Diagram. 

 

 

Figure 2. Currently installed sensors. 1: Motor-pump set: Accelerometer on pump bearing housing. 2: Piping: 
Accelerometer on primary pipe, exit from decay tank. 3: Piping: Two Inductive Proximiters on the Decay Tank –in / 

out. 4: Piping: Accelerometer on Decay T 



 

 

Figure 3. Accelerometer on pump bearing housing. Axial direction. Tentative transducer final position. Final 
transducer installation is subjected to maintenance plant quality control. Shown for demonstrative purposes. 

 

The monitoring system has an excellent record of service without failures since year 2008. The 

diagnosis is made using rules interpreted by the condition monitoring software. These rules were 

written using the expertise gather in the vibration division for machine diagnosis. Also it was used 

the information collected by the monitoring system in order to determine a vibration signature of 

the rotating equipments, in this case, the primary pump. Figure 4 shows the vibration signature of 

the RA-6 primary pump. This spectrum was generated using the reports collected by the system. In 

order to detect behavior changes, every new spectrum processed by the condition monitoring 

system is compared with the pattern shown. In order to calculate the vibration signature of the 



primary coolant pump, a long irradiation operation data set was used. For each report made by 

the condition monitoring system, a vibration signal with 4096 points and 1024 Hz frequency 

sampler is stored. The total acquisition time is therefore 4 seconds; this means that the system has 

the capacity to generate up to 900 reports per hour1.  

Using the data collected in an irradiation operation, an average spectrum was calculated. Each 

spectrum was computed using the FFT algorithm (using Cooley-Tukey Decomposition)2. Each 

frequency component was calculated as it shows in eq1: 

�̅�(𝜃) =
1

𝐶
∑ 𝐹(𝑖,𝜃)

𝐶

𝑖=1

                     (𝑒𝑞1) 

  

Where C is the total number of spectrums used in the average operation and θ is the angular 

frequency. 

 

Figure 4. Pump average vibration spectrum 

The objective of the average spectrum calculation is to reduce the random signal components, 

mainly due to pump-flow random interaction. In this case isn’t necessary to use time synchronous 

                                                             
1 The condition monitoring system is set to report in an interval of ten minutes. This value can be set by the 
user. 
2 www.fftw.org 



average because the intensity of the periodic components is not contaminated with other similar 

sources. Also the system supports stiffness is invariable.  

 

Figure 5. Comparison between average spectrum and peak hold spectrums. 

As the amplitude of each frequency component of the average spectrum, is and average of itself, 

the statistic distribution is important in order to determine the variation for each component. The 

mean value could be relative low, however it might have a high variance, therefore some 

components could reach considerably higher levels. In Figure 5 a comparison between the average 

spectrum and the result of computing the highest peak-hold and the lowest peak-hold spectrums 

is shown.   

 

1.3. DETERMINATION OF RELEVANT DIAGNOSIS FEATURES USING THE MACHINE 
INFORMATION AND A MECHANICAL DYNAMIC ANALYSIS 

 

The set of features that are needed to achieve an accurate diagnosis must be extracted from the 

data with prior knowledge of the machine characteristics. Some features are directly related to a 

diagnosis cause, others behave differently and a larger set of features must be used to achieve a 

failure analysis. The rotational speed, the alignment condition, the bearing type and number, the 

impeller geometry –number of vanes- and a modal analysis are valuable information when a well 

done vibration analysis is needed. A list of the features used to achieve a basic diagnosis will be 

listed and explained. Also some results of modal analysis is shown. 



1.3.1. UNBALANCE  

Unbalance occurs in a rotating machine when the mass centerline and the rotation axis do not 

coincide on each other. Unbalanced rotors generate vibration which can end up in damaging their 

components. In order to extend the life of the machine, vibration due to unbalance must be 

reduced to acceptable level. Despite the ability to reduce unbalance to low levels, these levels or 

limits must be defined.  

Unbalance amount is expressed as:  

𝑈 = 𝑚 𝑟  

  

Where, m is the “heavy spot” mass and r is the distance from the “heavy spot” to shaft-rotor 

centerline. The unbalance force generating the vibration is expressed as a rotating vector (phasor): 

�̅�(𝜔)= 𝑚 𝑟 𝜔2�̅�(𝜔) 

Where, F is the force, ω is angular frequency and r(w) is a  phasor rotating in the radial plane: 

�̅�(𝜔) = 𝑒𝑖𝜔𝑡+𝜃  

Expressing the force in the horizontal (x) and vertical (y) directions: 

  

𝐹𝑥 = 𝑚 𝑟 𝜔2 cos(𝜔𝑡 + 𝜃) 

𝐹𝑦 = 𝑚 𝑟 𝜔2 sin(𝜔𝑡 + 𝜃) 

 

The acceleration measured in the pump due to unbalance is a consequence of the unbalance 

force, as such, is strongly related to the angular speed of rotation. For the RA-6 primary coolant 

pump, the rotational speed is 24,8 Hz, and the frequency spectrum component is shown in Figure 

4. In order to obtain the unbalance related feature the frequency component is extracted from an 

average spectrum made with five raw spectrums.  

1.3.2. MISALIGNMENT  

Coupling misalignment is a condition where the shaft of the driver machine and the driven 

machine are not on the same centerline. For discussion purposes, the non-coaxial condition can be 

parallel misalignment or angular misalignment as depicted. The more common condition is a 

combination of the two in both the horizontal and vertical direction. In Figure 6 two types of 

misalignment are shown. 



 

Figure 6. Left: Parallel Misalignment. Right: Angular Misalignment. 

 

When a rotating machine is not perfectly aligned there is a distortion on the measured signal. This 

distortion changes the sinusoid form of the vibration signal. It can be detected looking for the 

rotation frequency harmonics.   A machine with a well done alignment would have none or 

practically zero harmonics level –THD, Total Harmonic Distortion-, however a misaligned machine 

would have a vibration spectrum with higher levels of harmonics. Analog to the unbalance 

detection process, the feature related to misalignment is extracted from the vibration average 

spectrum looking for the first harmonic of the rotational speed. For the RA-6 primary coolant 

pump this frequency component is at 49,6Hz as it is shown inFigure 4. The existence of this 

frequency component does not represent a failure condition, but this level must be monitored for 

changes.   

1.3.3. IMPELLER CONDITION 

The impeller condition is monitored by a frequency component in the vibration spectrum. When 

the pump rotor completes a revolution each vanes of the pump interact with the fluid. This 

generates a vibration response of the pump a number of times equally to the numbers of vanes 

per revolution. Any change in the vanes or impeller geometry, a non-homogenous fluid 

distribution at the inlet of the pump, or and eccentricity of the impeller, will produce a hydraulic 

unbalance of the rotor with an effect on the amplitude of the vibration in the vane passing 

frequency.  In the case of the RA-6 primary coolant pump the impeller have five blades and a 

related frequency of 124Hz (5X) as it is shown in Figure 4–five times the rotational speed 

frequency -. This kind of failure is very important because leads to a malfunction condition of the 

pump supporting bearings, shortening their useful life. Analog to the unbalance detection process, 

the feature related to the impeller condition is extracted from the vibration average spectrum.  

1.3.4. BEARING CONDITION 

Bearing damage is the most common cause of machine disruptions or failures. Although 

they have a robust and compact design, these components are subject to diverse  

influences that affect their service life: 

 High bearing loads –unbalance and misalignment- 

 Assembly errors 

 Lubrication problems 

 High operating temperatures 



 

The bearing condition is monitored using the pump vibration spectrum and envelope analysis. The 

envelope analysis technique requires an analog constant rise time pre-filtering. The vibration 

analysis allows the detection of incipient failures occurring in the bearing’s components –races, 

balls, etc.-. These incipient failures are detected as symptoms and are located in the envelope 

vibration spectrum as frequency components and in the vibration spectrum as broadband 

medium/high frequency noise. The primary coolant pump bearings are monitored extracting the 

following diagnosis features from the collected vibration data as: 

 

 Ball pass frequency from outer race (BPFO): 76.2 Hz 

 Ball pass frequency from inner race (BPFI): 122 Hz 

 Ball spin frequency (BSF): 50.5 Hz 

 Fundamental train frequency (TFT): 9.52 Hz 

 

And using the energy measured in frequency ranges and spectrum changes from 500 Hz up to 

3000 Hz. 

1.4. INSTALLED DIAGNOSIS SYSTEM BASICS 

Using the statistical and spectral features a pattern behavior is determined. This pattern –an 

average spectrum and statistical results as the RMS vibration level- has upper and lower 

boundaries calculated automatically with statistic tools. The methodology used to establish the 

boundaries is to multiply the maximum amplitude of each frequency component in the average 

spectrum to a factor proportional to the standard deviation of that particular frequency 

component.  

After the data is collected from the transducers an average and real time spectrum is calculated 

and the relevant features are extracted. The spectrums are compared to the pre-defined 

boundaries. When a violation of the boundaries occurs, an anomaly situation has been detected. 

In this case, the violation zones are compared with the diagnosis features, in order to associate the 

anomaly with a known cause. If none of these features denounce changes, the condition remains 

normal. However, when a feature changes its behavior –increase or decrease its value- a fault 

cause is associated. Whenever a feature or more lies out of the calibrated domain it is correlated 

with the other features values in order to map this pattern to a known and studied cause or 

failure. 

1.4.1. WARNINGS, ALARMS AND DISPLAYED INFORMATION. 

A display in the Reactor Control Room was implemented with the objective of presenting diagnosis 

information and early warnings to the Operator. The information presented includes the condition 

of the primary coolant circuit pump set.  



The Control Room system is connected to the monitor through the corporate network. In this 

manner, the processing of the acquired signals is made by the condition monitoring system and 

communicated to the control Room. In case of a warning or an alarm, the displays show the 

relevant information to assess the condition and, simultaneously, a sound alarm is triggered. The 

sound alarm in the Control Room is also directly connected to the monitor, ensuring its function 

independently of the computer network. From the safety point of view the system has a third 

independent alarm subsystem which can provide directly real time hardware connected alarms & 

warnings signals in parallel to the monitor. This alarm subsystem is totally independent from the 

computer-based processing system. 

The parameters used to trigger the online warnings and alarms are: the RMS –Root Mean Square- 

level for vibration severity [mm/s] in the pump, the general RMS vibration level in the pump [mg] 

and an indicator of bearings shock pulses.  

All the parameters used by the warning and alarm sub-system are displayed in a screen in the 

control room. When a warning or alarm event take place, the operator has the information 

available to discriminate which parameter reached a limit. Also, a complete report is generated 

with all the signals acquired and their correspondent vibration spectrum as others processed 

parameters. Figure 7 shows the information provided by the condition monitoring system in the 

control room. The diagnosis information is also displayed and shown in Figure 7. 

 

Figure 7. Information provided by the condition monitoring system displayed in the control room. 

 



2.1. UPGRADE OF THE CONDITION MONITORING SYSTEM 

 

As part of an IAEA3 coordinated research project, the vibration division is currently working on 

computational tools and technological devices to implement efficient condition monitoring 

programs. Once the raw data is collected from the transducer –wired or wireless technology- the 

system automatically process them to extract valuable features determined after completing a 

mechanical analysis of machine and using the expertise available as was explained. These features 

form a multidimensional space where the machine dynamic behaviors are projected forming 

clusters. Some features are more relevant to a specific condition, so in order to classified the 

information a dimensional reduction must be done. There are several ways to achieve 

dimensionality reduction, one of the most popular is the Principal Component Analysis -PCA- in 

which a linear transformation is applied to the data, projecting it to a lower dimensional space in 

maximum variance direction.  If new patterns appear, they must be detected and classified. Non-

supervised machine learning algorithms are being tested, derived from competitive learning using 

artificial neural networks.  Once the data has been classified into different clusters, relevant 

features are ranked and general rules of behavior could be formed.  

The aim of upgrading the condition monitoring system is to outfit the installed software with 

“learning” capabilities. This means that the system would have the ability of enhance its 

knowledge base and would be able to use the learned experience to achieve an accurate diagnosis 

or a rapid detection of an anomaly. The newest knowledge could be implemented in form of rules, 

like the previous system or could be stored numerically as synaptic weights of an artificial neural 

network. In Figure 8 a block diagram of the upgraded system is shown. This new approach is based 

on extract relevant features, detect anomalies and classify new groups of behavior creating 

classification rules. 

 

Figure 8. Automatic Condition Monitoring Tool. Block Diagram 

                                                             
3 CRP: Condition Monitoring and Incipient Failure Detection of Rotating Equipment in 
Research Reactors 



2.2. UNSUPEREVISED ANOMALY DETECTION  

 

Detecting small changes in stream data is one of the subjects being studding in machine learning 

field. This changes are commonly known us a novelty, outlier or anomaly. Statistical behaviour of 

the involving variables is taken into account in order to detect changes or new patterns. The 

system shall use the features extracted from the measure data to detect changes in the machine’s 

condition.  

Once the feature space is determined, on each acquisition the online tool extracts a new set of 

features describing the pattern behaviour. Each point in this multidimensional space represents a 

condition of the machine. The Euclidian distances between point reveals which are more similar, 

that means if a group of point lies in a particular domain of the feature space they form a cluster. 

Depending of the pattern analysed, some features may present similar statistical behaviour, and a 

strong correlation might exist. Adding more features, and so more dimensions, increase the 

probability of having redundant information. Principal Component Analysis -PCA- is used in order 

to reduce and compact the feature space. PCA is commonly used as an unsupervised machine 

learning tool to achieve dimensionality reduction. In order to explain this idea the Figure 9 shows a 

compact cluster with bounded domain representing the normal behavior of a machine. 

 

Figure 9. Calibration cluster, first tree principal components. 

When there is a change in the condition of the machine, o or more features would change their 

statistical behaviour, resulting in a point place far away from the original cluster. The distance is 

measured and this new collected information is therefore labelled as an anomaly as shown in 

Figure 10-A. Later, if the condition of the machine really changed, a new cluster would form 

(Figure 10) and further assumptions could be done. 



 

Figure 10. A) Anomaly detected, first data stream of the new cluster. B) Second cluster shown. 

The classification system is called unsupervised becouse there is no need to train it with labeled 

examples. It must be capable of finding patterns in the stream data. This pattern recognition 

technique used clustering algorithms derived from the “competitive learning” of artificial neural 

networks. Every time a new behavior point is collected a synaptic weight from the neural network 

is activated. This weight is the closer one so is declare the “winner” allowing it to move closer to 

the input. This means that this synaptic weight will classify the entire cluster. 

 

2.3. AUTOMATIC RULE GENERATION 

 

Once the data has been classified into different clusters, relevant features are ranked and general 

rules of behaviour can be formed. In order to obtain a more comprehensive set of data to explain 

the detected changes in the machine condition it is necessary to reduce the non-relevant data or 

features. A feature ranking task would arrange the most relevant features between two sets of 

observation –previously classified clusters-. Exhaustive correlation search between features is 

done using the Fisher’s Discriminant Ratio -FDR- and features cross correlation. Once the features 

are ranked, the rule for the condition classification is generated. The rule generation process uses 

the statistical changes in the most relevant features ranked using IF-THEN statements. 

 

3. STUDY CASE 

 

Before installing the upgrades for the condition monitoring systems several tests must be done. 

One test carried out in the laboratory is presented. In this test, rolling bearing condition is 

monitored using the vibration spectrum and envelope analysis. All signals are expressed as a 

function of shaft revolutions and converted to the order domain. Digital order tracking is used to 

remove the effects of speed fluctuations. Vibration analysis allows the detection of incipient 



failures occurring in the bearing’s components –races, balls, etc.-. These failures are detected as 

symptoms and are located in the vibration spectrum as the following frequency components: 

 

 Over-rolling Frequency of One Point on the Outer Ring (Fe) 

 Over-rolling Frequency of One Point on the Inner Ring (Fi) 

 Rotational Frequency of a Rolling Element About its Own Axis (Frb) 

 Over-rolling Frequency of One Point on a Rolling Element (Fb) 

 Rotational Frequency of the Rolling Element and Cage Assembly (Fc) 

 

Using a rolling bearing test bench, the signal processing and machine learning techniques are used 

in order to identify abnormal behavior and extract rules to characterize each pattern. 

3.1. EXPERIMENTAL SETTING 

3.1.1. TEST BENCH DESCRIPTION 

Experimental practice is performed on a rolling bearing test bench developed by the vibration 

laboratory. It allows the testing of bearings with sizes varying from ID = 25mm to ID = 100 mm and 

OD up to 160mm. The facility allows the use of axial and radial loads, control bearing temperature 

and vary the angular speed of the shaft. The driving force is provided with a Three-phase squirrel 

cage electric motor connected to an inverter control unit. 

Transducers: 

 A 256 points incremental encoder is used to measure the shaft instantaneous angular 
speed – IAS -. 

 Medium frequency accelerometer mounted on bearing support, vertical direction. Brüel & 
Kjaer model 4371. Analog bandpass filter 2 Hz – 20 kHz. 

 High frequency piezoelectric sensor developed in the vibration laboratory, mounted on 
bearing support, vertical direction. Analog bandpass filter 15 kHz – 60 kHz. 

 

 The signals are simultaneously acquired with an ADC with sampling frequency up to 150KHz. 

 

https://en.wikipedia.org/wiki/Three-phase_electric_power
https://www.bksv.com/es-ES
https://www.bksv.com/es-ES


 

Figure 11. Bearing test bench developed by the Vibration Division. 

 

3.1.2. CONDUCTED TEST 

For this test a SKF 6307 - C3 deep groove ball bearing was mounted on the test bench. The 

lubricant used was Klüber – Klüberplex BEM 41-132 grease. The new bearing was tested under two 

magnitudes of pure radial load, as depicted in Table 1. Then, small size marks were conducted on 

the inner race to simulate a distributed inner-race fault. The damaged bearing was tested again 

with the previous load and lubrication conditions, and additionally without lubrication, as shown 

in Table 1.  

 

Table 1: Test conditions  

Condition Load Lubrication 

New 1 3 kN Grease 

2 12 kN Grease 

 

Damaged 

3 12 kN Grease 

4 3 kN Grease 

5 3 kN None 



3.1.3. DATASET 

For each test condition three time series signals are collected. Two vibration signals from 

piezoelectric transducers covering frequency domain up to 60kHz and an encoder TTL signal 

dividing each shaft revolution in 256 parts. In Figure 12 an example of the raw signals acquired is 

shown for a complete revolution of the shaft. Each vibration transducer is focused on a part of the 

spectrum due to pre-analog filtering. The accelerometer signal is low pass filtered in the band 1 Hz 

- 20kHz. Meanwhile the piezoelectric transducer is being filtered with an analog passband filter in 

the band 15kHz - 60kHz. All signals are sampled at 150kHz. 

 

 

Figure 12. Time series acquired from the test benchmark - Healthy bearing with normal load -. From top to bottom the 
signals are: Accelerometer [1-20kHz]; Piezoelectric Vibration Transducer [15kHz-60KHz]; Encoder Signal. 

 

3.1.4. FEATURES 

The features chosen for this experience were spectral components related to the dynamical 

behavior of the test bench and the condition status of the bearing and It components. The 

features extracted are shown in Table 2. 

 

Table 2. Extracted Features 

FEATURE ORDER 

MAGNITUDE 1X 1 

MAGNITUDE 2X 2 



MAGNITUDE OF ROTATIONAL FREQUENCY OF THE CAGE ASSEMBLY (FC) 0.383 

MAGNITUDE OF OVER-ROLLING FREQUENCY OF ONE POINT ON THE 
OUTER RING (FE) 

3.061 

MAGNITUDE OF OVER-ROLLING FREQUENCY OF ONE POINT ON THE 
INNER RING (FI) 

4.939 

MAGNITUDE OF ROTATIONAL FREQUENCY OF A ROLLING ELEMENT 
ABOUT ITS OWN AXIS (FRB) 

2.012 

MAGNITUDE OF OVER-ROLLING FREQUENCY OF ONE POINT ON A 
ROLLING ELEMENT (FB) 

4.024 

 

3.1.5. RESULTS 

Due to test conditions, the bearing was removed from the test bench, damaged, and installed 

again. Therefore, the processing was made off-line. However, in order to approximate to real life 

condition, the data was streamed as it was and on-line event. Figure 9 and Figure 10 shows the 

first results of the developed tool. The first cluster detected - Figure 9- corresponds to a healthy 

bearing with a 3kN of radial load. As it was expected, this condition formed a compact cluster. 

Once the cluster was detected the load was increased to 12 kN. The results of the change in the 

condition are rapidly detected as an anomaly shown in Figure 10-A. The first two condition 

behaviors were determined. Two features are the most relevant ones and were ranked resulting in 

the following order: 1X and bearings Rotational frequency of a rolling element about its own axis.  

Finally, the conditions tested were, according to Table 1, from group 1 –healthy bearing, 3kN of 

radial load- to group 2 - healthy bearing, 12kN of radial load -; from group 2 to group 3 - unhealthy 

bearing, 12kN of radial load -; from group 3 to group 4 - unhealthy bearing, 3kN of radial load – 

and finally from group 4 to group 5 - unhealthy bearing, 3kN of radial load without grease-. The 

results with the more relevant features are presented in Table 3. The complete dataset is shown in 

Figure 13, with discrimination between the groups with closest distances, the ones with damaged 

bearing condition. 

 

Table 3. Feature ranking results between automatic detected clusters 

Group Features Features comparison to 
calibration group 

1 – 2 1X – mean value decrease and dispersion 
rise 

Fb – mean value remains unchanged and 
dispersion decrease 

1X – mean value decrease and dispersion 
rise 

Fb – mean value remains unchanged and 
dispersion decrease 

2 - 3 1X – mean value decrease and dispersion 
decrease 

Fe – mean value rise and dispersion rise 

Fi – mean value rise and dispersion rise 

Fb – mean value remains similar and 
dispersion increase 

Fe – mean value rise and dispersion rise 

Fi – mean value rise and dispersion rise 

3 - 4 1X – mean value rise and dispersion rise 1X – mean value decrease and dispersion 



Fb – mean value decrease and dispersion 
decrease 

Fe – mean value decrease and dispersion 
decrease 

decrease 

Fe – mean value rise and dispersion rise 

Fi – mean value rise and dispersion rise 

4 - 5 1X – mean value decrease and dispersion 
decrease 

Fb – mean value rise and dispersion rise 

Fe – mean value rise and dispersion rise 

1X – mean value decrease and dispersion 
decrease 

Fe – mean value rise and dispersion rise 

Fi – mean value rise and dispersion rise 

 

 

Figure 13. Top: All dataset projected in to their principal components. Bottom: Discrimination between groups of 
similar behaviour –Damaged Bearing- 

3.1.6. CONCLUSIONS 

 

The new developed tool achieves 100% success rate to discover the patterns in the presented test 

with the features selected. Once the bearing was damaged, the amplitude of the frequencies 

related to the inner and outer bearing ring damage become more relevant in the detection of this 

condition cluster.  

Nowadays classification and anomaly detection is done using as much features as it is needed to 

obtain maximum classification rates, however the nature of the changes remain unknown if non-



posterior analysis is made. The online tool described in this paper conducts the anomaly detection 

and then informs the characteristics that were responsible of the anomaly. 

 

It is a powerful tool to apply in industrial facilities with similar machines working in similar 

conditions. Once a new pattern is discovered in one machine, and a rule for that pattern is made it 

can be used as a rule for early failure detection in another machine. Especially if similar bearings 

are used. These capabilities are being studied and further investigations must be done in this area.       

 


