18th IGORR Conference and IAEA Workshop 2017 December

Filling the Neutron Gap at CNL after Shutdown of the NRU Reactor

C. Van Drunen, K. McCarthy, C. McDaniel, N. Kuwahara

Canadian Nuclear Laboratoires Nucléaires Canadiens

UNRESTRICTED -1-

Chalk River Laboratories is the single largest science and technology laboratory in Canada.

9,100 acres with 200 acres of lab complex17 nuclear facilities, 70 major buildings3,100 employees (500 PhDs & Masters)1,600 engineering, scientific & technical staff

Advanced nuclear fuels and materials research Radiobiology, radioecology and dosimetry Hydrogen and hydrogen isotopes management Nuclear safety, security and risk management Nuclear and systems engineering Nuclear chemistry applications

The NRU reactor enabled 60 years of scientific innovation.


500M+ patient treatments CANDU reactor Neutron spectroscopy

so now what?

Context shaping our strategy

- Canada is committed to achieving its climate goals
- Nuclear power is 18% of Canada's energy mix
- Nuclear science and technology (S&T) drives a \$6B domestic industry and 60,000 jobs
- **\$25B** is being invested to refurbish CANDU reactors
- Canada has established federal nuclear S&T priorities for CNL for 10 years
- Canada is investing \$1.2B over 10 years in CNL to sustain the capabilities needed in its national nuclear laboratory
- CNL's long-term strategy* features small modular reactors, supporting existing reactor fleets and much more
 *http://www.cnl.ca/site/media/Parent/Long_Term_Strategy_2017April18.pdf

Canada's Nuclear S&T Priorities

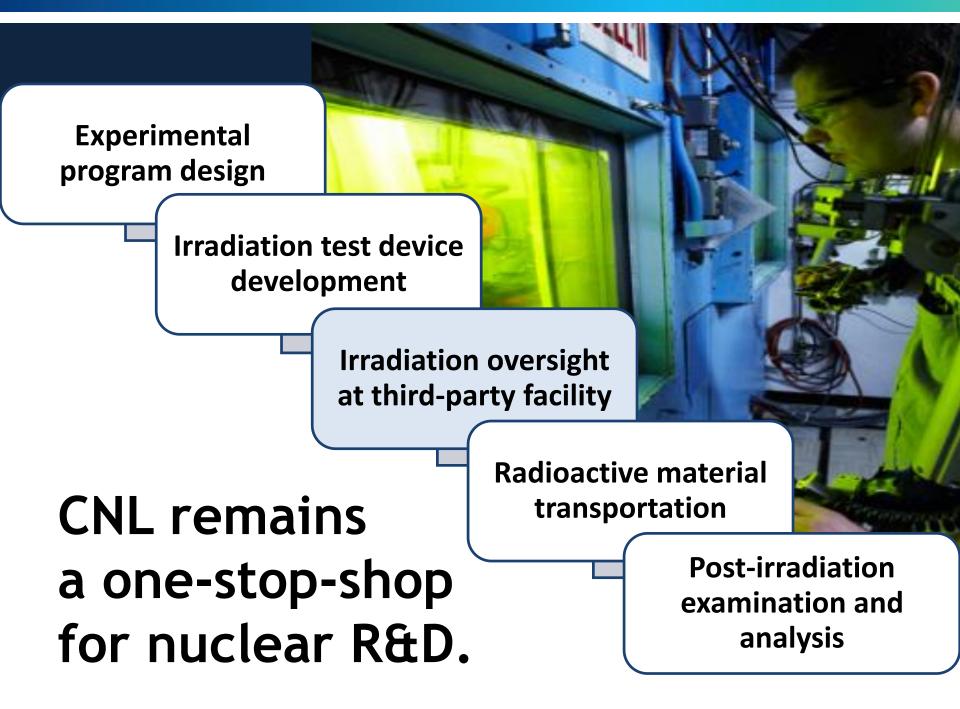
Science & Technology Federal

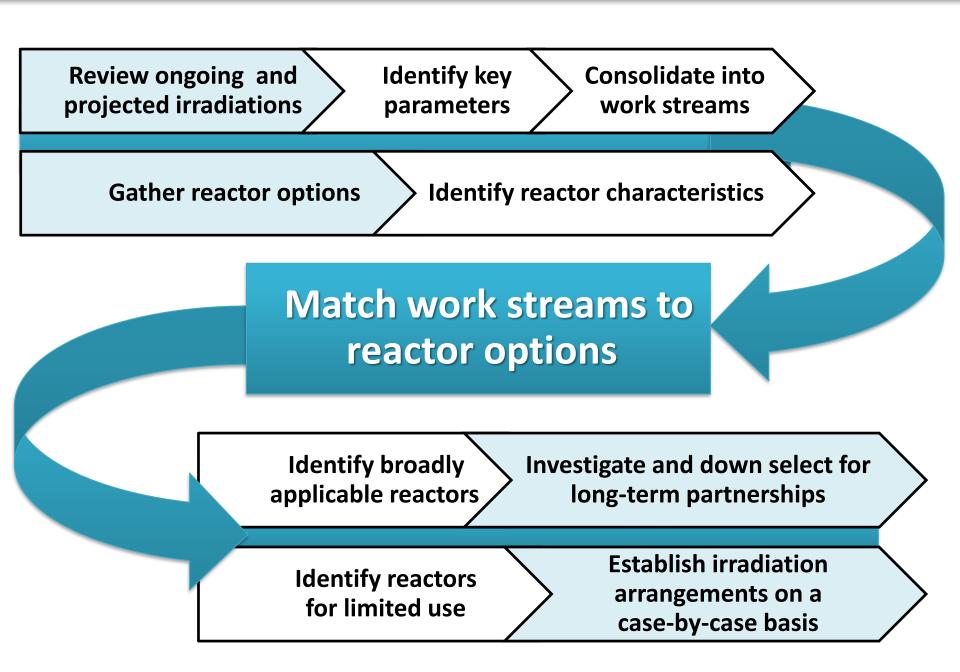
Supporting the development of **biological applications** and understanding the **implications of radiation on living things**

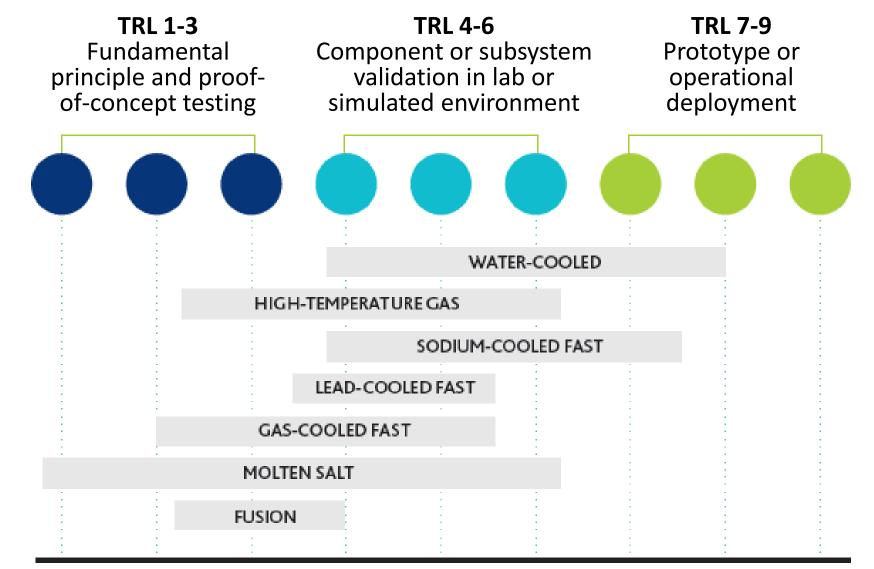
Enhancing **national and global security** by supporting **non-proliferation and counter-terrorism**

Nuclear preparedness and emergency response

Supporting safe, secure and responsible use and development of nuclear technologies


Supporting **environmental stewardship** and radioactive **waste management**





Projecting irradiation demand

- Support the development of various reactor designs through fuels and materials irradiations, including specific small modular reactor fuels for qualification, and next generation fuel development
- Underpin studies and experiments related to the aging, safety and life-extension of CANDU and light-water reactors
- Support the training and skills development of Canada's future nuclear workforce
- Preserve and advance strategically important CNL facilities and expertise
- Leverage existing irradiated material inventory and nuclear data while addressing knowledge gaps related to the development of fuels of interest to Canada and commercial fuel vendors

Advancing SMR Technology Readiness

http://www.cnl.ca/site/media/Parent/CNL_SmModularReactor_Report.pdf

Defining key parameters for ongoing and future experimental programs

- Suggested/actual reactor used
- **Required Power**
- Required Max Thermal Flux
- Required Max Fast Flux
- Irradiation arrangement and test conditions
 - loop, in-core position/channel, reflector position, rabbit, beam port gas-cooled, flows, pressure/temp, instrumented,...
- Required largest thermal flux test volume and thermal flux
- Required largest fast flux test volume and fast flux
- Time frame (dates), duration and number of tests
- Irradiation demand trend, drivers, etc.

Irradiation needs are varied.

Work Stream	Thermal Neutron Flux Required (n/cm ² /s)	Fast Neutron Flux Required (n/cm ² /s)	Irradiation Environment Conditions Required		
FUEL					
CANDU Reactor	1.5 to 3.0E+14	>1.0E+14	Pressurized Heavy Water Reactor preferred (CANDU or Advanced CANDU Reactor)		
Light Water Reactor	>1.0E+14	>1.0E+14	Light Water Reactor preferred		
Research Reactor	>1.0E+14	>1.0E+14	Pool Reactor		
Advanced Reactor (fast or thermal)	>2.0E+14	>2.0E+14 (up to 7E+15)	Design-specific advanced reactor conditions		
Advanced Reactor (SCWR)	To be determined	>2.6E+13	Reactor-specific design conditions		
MATERIAL					
High Neutron Damage	>1.5E+14	>1.0E+14	Reactor-specific design conditions		
Corrosion Loops	0.4 to 1.5E+14	~5.0E+13	Reactor-specific design conditions		

Identifying preliminary list of technical characteristics of existing research reactors

Kasalar Tyge Thorner OWNO Maliguegess Fast Kasalar Kasalar Kasalar LVE-15 REE		н 0-	San Dale	insun Gun n ² 40 1924 Y	Detited artificality/ Do		Irradiation aspaktition Test conditions		velues o	nguni dank kan kasi ndanan danañag			
		Readier		Type Face (MPN		Manimum Banadi San (alam ² h)	Mantenan dasi Gan (staniya) D-0.150 yi	Datitud orificabily/ design life			Largest Largest Barwal Dan Bar k Interview veloci (stanik) (stani	-	
i Republic II-11 Inia	CADRI France Malden I Water 2 Nervag			Randor Advanced Text		236a	Thermal Ferrer (MW)	Masteur Hornal Das (alasika) 240.000V	Manimum Anti Gan (siam ³ h) 25-0.1954/F	Datilial artificality/ datign life	Bradition aspabilities Test southtees Sings	Langasi Darwal Dan Int velame (scher ² it) 12.7 un dia	Lorgeri fast Gan tesi velame (stan ² k)
Run an Xirairen aden ar an Dj	Open Fo Anstella Lightna IDFALI			Reaster (ATR) United States	~	alar lank			2.52+04 (2>036er)	22910	9 shawala 47 iorana gashinan 24.03 sefasioriyani gashinan 2 hana gash 2 hana gash	122 am kaighi (1.55+12)	100 am baigte (2.50+14)
Lidnamani nik Seasier 5] Tun naring Taul	Assista	n Reseiter-C	-	High Flan José Ensaiter (NFIE United States Managhanath	0 ~	ighi alar lanb		122+13	1.52+00 (2.513er)	1960) 20000	Diange 37 investe gestione 42 reflecter gestione 4 hean geste Deskisten tengensiere og te 1200 °C	7.2 am dis. 51 am height (4.32+14) 4.37 am dis.	7.2 am dia. 51 am keight (1.32+13) (.37 am dia.
(HFETE)	(MFE) Statikasta		-	Constitute of Technology Seaster - 3 (MITE-0) Coded States		igen wier turk ek mery wier wier turk	-			70000	2 inventor positions 5 reflector positions 5 heave positions for some flow integra of FUE or SUVE constituent, NTOE maticals larging to 1300 °C, participal statis	32.5 um baight (3.52+13)	22.5 em beigte [1.22+04]
	Japan M Teel Zan (2017E) Japan JONO Japan			University of Missestri Estat Estation (MUE United States	and a	igas atar taris	10	2.22+14	1.52+04	1968/ 50000	espede with instrumentation analable Diargo Jiarone publicas 12/3 referiency publicas Diarte garte Diarte garte	13.0 um dia. 01 um keight (8.52+14)	13.5 en dia. 61 en keight (2.52+13)
	DOX-00 Remin		U.S. National Damas of Standards Res (NDSR) United States Transient Rese	••• ~	inany ater tarih ragista,	20	022-00	2.82+04	1909	Dianga 15 in-una gantinan 7 mEndar gantinan 18 inun garta Sinta nggata aniy	5.17 um dia. 13.7 um beight (4.52+04)	2.33° um dia. 12.7 um height (2.02+14)	
5. (3	Migh Fil Reserved (200-0) Reserve	en Enanter		Test Fastbiy (TREAT) United States Malifactor New Essenter (MNE Essente	5 (mar 17)	uine	3	Fuine 1.02-07 1.02-06	6.82+13	1828	Diangs 7 diseastis (4.55+13 man Gun)		
	Santa-San Russia	1		SLOWFORD- (varies) Canala RA-10		**1 (256	20 MW	1.02-12	51.3D+11 >0.0214	1910 and Later Englacied is	Up in 2 pail and	Islan	3 am dia.
	Fill. Russia			Argeniina Jaim Marruija	~		100	2.22-14	1.82+12	2028 Englasted is	3 anymaina inag	andies with 00 an largth >1.00+14 10 an israes	12 am langth >3.00+14
l			:	South Harrison Enaster Frankas				222904	1.52,405 2.32,406 (E>4 May)	2023 (20 yaun	1 annual de gentieres 15 annue gentieres 21 milione gentieres 9 milione gente 7 MR, 2018, 2018, 31%	15 am brann ganhinn 25 am din raGaninn ganhinn	10 um de- anna position 20 um dia. reficeire position

Evaluation Criteria

- / Technical requirements
- ✓ Strategic partners and cooperation
- Cost, transportation, logistics
- ✓ Reactor accessibility and long-term availability
- CNL's ability to perform key activities to sustain technical competencies

Exploring several options to address technical requirements

- Utilizing multiple research reactors
- Setting up long-term agreements for reserved space with one or more reactors
- Leveraging the IAEA International Centre based on Research Reactors (ICERR) scheme
- Securing space in an operating power reactor
- Acquiring time on a new test reactor
- Participating in the development of a new test reactor

There is no one-size-fits-all solution.

Providing solutions to challenges in energy, health, safety, security and the environment

What amazing things is the world turning to Chalk River for?

Clean energy. Health care. Industrial solutions. Advanced fuels. Innovative technology.

For starters.

Christina Van Drunen Director, S&T Strategy and Collaboration <u>christina.vandrunen@cnl.ca</u>

www.cnl.ca