

Nuclear Compact Reactors

MONTE-CARLO COUPLED DEPLETION CODES EFFICIENCY FOR RESEARCH REACTOR DESIGN

E. Privas, C. Bouret, <u>S. Nicolas</u>, L. Manifacier December 5th – 18th IGORR Conference 2017

Nuclear Compact Reactors

p. 2/ 24

Introduction

- **TechnicAtome**: specializes in the design, construction, operation and maintenance of compact nuclear reactors
- Early stages of core design and industrial studies require a quick and efficient calculation of key neutronic parameters at any time
 - Mainly achieved by deterministic calculation schemes
 - COCONEUT (COre COnception NEUtronic Tool)

Nevertheless

- Deterministic codes: problem dependent / V&V process for various kinds of cores
- Improvement of CPU power: Monte-Carlo burnup calculations for industrial studies

Aims of this paper:

- Monte-Carlo burnup codes for industrial studies (TRIPOLI4[®], MCNP, Serpent) ?
- Describe a case study part of the V&V process undergone by COCONEUT

Case study:

A multipurpose dummy core designed by TechnicAtome

1	Depletion calculation methods
2	Codes used in this study
3	Case study: Dummy core
4	Results and Analysis
5	Conclusion and Outlooks

- **Depletion calculation methods**
- 2 Codes used in this study
- ③ Case study: Dummy core
- **④ Results and Analysis**
- **5** Conclusion and Outlooks

Depletion calculation methods (1/2)

General diagram for depletion calculation

Depletion calculation methods (2/2)

Deterministic approach

1 Depletion calculation methods

- 2 Codes used in this study
- ③ Case study: Dummy core
- ④ Results and Analysis
- **5** Conclusion and Outlooks

Codes used in this study: MC codes

TRIPOLI4®

- Code developed by CEA (French Alternative Energies and Atomic Energy Comission)
- Safety studies reference at TechnicAtome
- Polyvalent code
- Large V&V process

- Root based interfaces (pre / post processing)
 - Geometry modification during depletion
 - Refueling module
 - Possibility to develop a tool for uncertainties propagation

MCNP

- International reference
- Code largely benchmarked
- Many applications at TechnicAtome
- Assessment of JHR neutronic performances

Serpent

- Fast
- New methods (perturbation, coupled physic...)
- Automatic mesh
- Undergoing V&V process

Codes used in this study: COCONEUT scheme

Monte-Carlo Coupled Depletion Codes Efficiency for RR - p.10/24

This document is the property of "Société Technique pour l'Énergie Atomique" and may not be reproduced or communicated to a third party without prior authorisation Technic Atome

- ① Depletion calculation methods
- 2 Codes used in this study
- **3** Case study: Dummy core
- ④ Results and Analysis
- **5** Conclusion and Outlooks

Case study: Dummy core (1/2)

AIMS

Comparing methodologies / non-regression tests

- Education and Training object
- Validation and qualification of both calculation and computational techniques
- V&V purposes

DESIGN

- Only describe two assembly types
- Simple to model
- Fuel lattice pattern
- Add components
 - Reflector vessel (heavy water...)
 - Experimental devices
- Add ex-core environment

Depending on the case study

Standard Fuel Assembly (SFA)

Absorber Fuel Assembly (AFA)

Monte-Carlo Coupled Depletion Codes Efficiency for RR - p.12/24

This document is the property of "Société Technique pour l'Énergie Atomique" and may not be reproduced or communicated to a third party without prior authorisation

Case study: Dummy core (2/2)

Fuel assembly lattice configuration (2D)

3 configurations

- Temperature: 300°K *
- Total: 62 depleted medium *

(rod out)

(rod in)

For more information

Dummy Core for V&V and **Education & Training Purposes at** TechnicAtome: In and Ex-Core **Calculations**

S. Nicolas, A. Noguès, L. Manifacier, L. Chabert

Full core configuration (2D)

32 assemblies core

- 16 SFA / 16 AFA **
- Reflector / coolant : light water *
- Fuel lattice: 10 cm *
- Total: 672 depleted medium *

- ① Depletion calculation methods
- 2 Codes used in this study
- ③ Case study: Dummy core
- **④ Results and Analysis**
- **5** Conclusion and Outlooks

Results and analysis: Standard FA (1/3)

Benchmark considerations

- The same consistent parameters are taken into account for each code and simulation
 - Reflecting surface are defined as boundary conditions
 - 50 burnup steps with a maximum value of 100 GWd/tU
 - Assembly power of: 1.5625 MW_{th}
 - **Depletion** in fuel and boron plates
 - Temperature: 300 K
 - JEFF-3.1.1 nuclear data library

Results and analysis: Standard FA (2/3)

Initial k_{inf}

Monte Carlo codes are all the same within the 1σ range / +150 pcm bias for COCONEUT

Depletion:

- Maximum reactivity peak at ~64 GWd/tU (less than 10% of [¹⁰B] remains)
- COCONEUT: Maximum reactivity discrepancy is found when ¹⁰B is half consumed (+280 pcm)
- Bias relatively constant between MCNP and Serpent even after 60 GWd/tU
- Discrepancies become visible after 60 GWd/tU between TRIPOLI4[®] and other MC codes

Results and analysis: Standard FA (3/3)

Monte-Carlo Coupled Depletion Codes Efficiency for RR - p.17/24

This document is the property of "Société Technique pour l'Énergie Atomique" and may not be reproduced or communicated to a third party without prior authorisation

Technic Atome

Results and analysis: 2D full core (1/3)

Benchmark considerations

- The same consistent parameters are taken into account for each code and simulation
 - Reflecting surface on Z axis
 - 50 burnup steps with a maximum value of 80 GWd/tU
 - Core power of: 50 MW_{th}
 - Temperature: 300 K
 - JEFF-3.1.1 nuclear data library

Results and analysis: 2D full core (2/3)

Core calculation: multiplication factor comparison

MC codes

- Discrepancy between -110 pcm and +78 pcm *
- Simulation time: Serpent faster than TRIPOLI4® *

COCONEUT vs mean of MC codes

- Fresh fuel : -235 pcm *
- Constant bias during the depletion: (between -395 pcm and -235 pcm) *
- * 6 factor formula has to be calculated during the depletion to determine compensations

Slight discrepancy between the codes.

Next step:

3D core calculation and critical

the depletion.

Monte-Carlo Coupled Depletion Codes Efficiency for RR - p.19/24

Reactivity comparison (mean value of MC codes as

Results and analysis: 2D full core (3/3)

Monte-Carlo Coupled Depletion Codes Efficiency for RR - p.20/24

This document is the property of "Société Technique pour l'Énergie Atomique" and may not be reproduced or communicated to a third party without prior authorisation Technic Atome

- ① Depletion calculation methods
- 2 Codes used in this study
- ③ Case study: Dummy core
- ④ Results and Analysis
- **5** Conclusion and Outlooks

Conclusions

Good agreements between MC codes for 2D assembly and 2D full core

- Serpent faster than other MC codes
- Quantify the differences between normalization methods
- **Small discrepancy** between COCONEUT and MC codes
 - Constant bias around -300 pcm during the entire depletion for 2D full core
- Dummy core is well suitable for core calculation studies and gives a better understanding of design purpose

Outlooks

Optimize MC coupled depletion codes

- Adapt time mesh with the flux gradient
- Test of refueling algorithm proposed by Serpent and TRIPOLI4[®]
- Changing depletion mesh step by step during the depletion (3D calculation)
- Perform uncertainties propagation (compositions / flux)
- Comparison with experimental core data

COCONEUT

- Estimate compensations with 6 factors formula
- 281 groups calculation
- Perform self shielding during the depletion

Dummy core: future works on new methods for neutron propagation from core to ex-core system

TechnicAtome

18th IGORR Conference – 3-7 December 2017 p. 24/ 24 Nuclear Compact Reactors

Depletion calculation codes and benchmark considerations (1/2)

Neutronic analysis :

- Rise to equilibrium / Material balance
- Flux / power distribution, Absorbers worth

I Mainly used for export fuel assembly burnup compositions to MC codes

Principal model consideration

- 1) XS calculation
 - XS collapsing: MOC calculation 281 → 26 groups
 - · Self-shielding performed at the initial step
 - AFA is treated as a supecritical pattern representative of neutronic spectrum in the AFA.
- 2) Core calculation
 - Transport theory (26-group) 2D exact → APOLLO2
 - Diffusion theory (4-group) 3D model \rightarrow CRONOS2

Currently undergoing a large V&V process

 Part of this process: estimate the impact of main assumptions on depleted composition with MC codes

Results and analysis: Standard FA (3/4)

COCONEUT : discrepancy analysis

Burnup (GWd/tU)	20	40	60	80	100
Δ[²³⁵ U]	-0.12	-0.27	-0.46	-0.69	-1.03
Δ[²³⁹ Pu]	2.42	1.89	1.33	0.82	0.21
Δ[¹⁴⁸ Nd]	1.95	2.07	2.12	2.14	2.15
Δ[¹⁴⁹ Sm]	1.36	1.13	1.59	2.03	2.48

Relative concentration comparison (%) between COCONEUT and mean value of MC codes

Main concentrations

- Less than 3% discrepancy
- Constant bias on ¹⁴⁸Nd (burnup indicator)

[¹⁰B]

Burned faster with TRIPOLI4[®] and COCONEUT

depletion chain / power normalization ?

COCONEUT Outlook

- Depletion with 281 group
- Self shielding during depletion (several steps)

