Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E)

Xue-Ming Shi Xian-Jue Peng

Institute of Applied Physics and Computational Mathematics(IAPCM), BeiJing, China

December 3-7, 2017 Sydney, Australia

Outline

- 1. Background
- 2. Blanket neutronics and Numerical tools
- 3. Design guide line and the blanket model of FFHR-E
- 4. Numerical results of FFHR-E
- 5. Summary

1. Background

Fusion science and technology is making progress, but...

- International Thermal Experimental Reactor (ITER) is under construction, preliminary feasibility of controlled fusion will be demonstrated in ITER, Fusion Gain Q~5, Fusion Power: 300-500MW
 There are still a long way to go for
 - pure fusion reactors:

High Q: ~30

Material Irradiation: ~200 dpa for structural material

FFHR can accelerate the early application of fusion energy

Traditional Fusion Fission Hybrid Reactor (FFHR)

FFHR can be classified as Breeders and Transmuters

Breeders were popular before 1980s, to produce plutonium for fission reactors, and form the so called fusion fission symbiotic system

Breeders will need frequent separation of plutonium from uranium , which limits its development

Transmuters become more popular after 1990s, as the inventory of accumulated spent fuel increased.

Transmuters need tens of tons of plutonium in the blanket, which is nearly ten times the plutonium in a fast reactor

FUSION FISSION HYBRID REACTOR FOR ENERGY (FFHR-E)

\Box fusion power 300~500MW, Q~5.

The average energy multiplication (M) is about 10, and Tritium Breed Ratio (TBR) is greater than 1.15, blanket power ~3000 MWth Nearly 600 tons **nature uranium**, which can be

reused in multiple cycles, Breed and burn of plutonium in blanket

simplified reprocessing without separation of TRUs

2. Blanket neutronics and Numerical tools

Couple of Neutron transportation and burnup

Nearly 340 nuclei and 9 different types transition cross sections are considered in the transport calculation(MCNP) Nearly 1700 nuclei are considered in burnup calculation(ORIGENS)

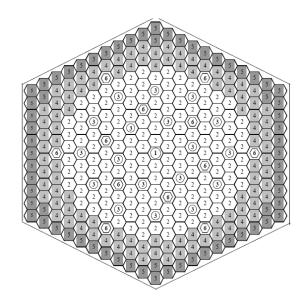
MCORGS=MCNP+ORIGENS

 $M = \frac{energy \text{ deposited in the blanket by one fusion source}}{\text{energy released by one fusion reaction(17.6Mev)}}$

$$TBR = \int (\Sigma_{(n,T)}^{Li^{6}} + \Sigma_{(n,n')}^{Li^{7}}) \Phi(r,E) dr dE$$

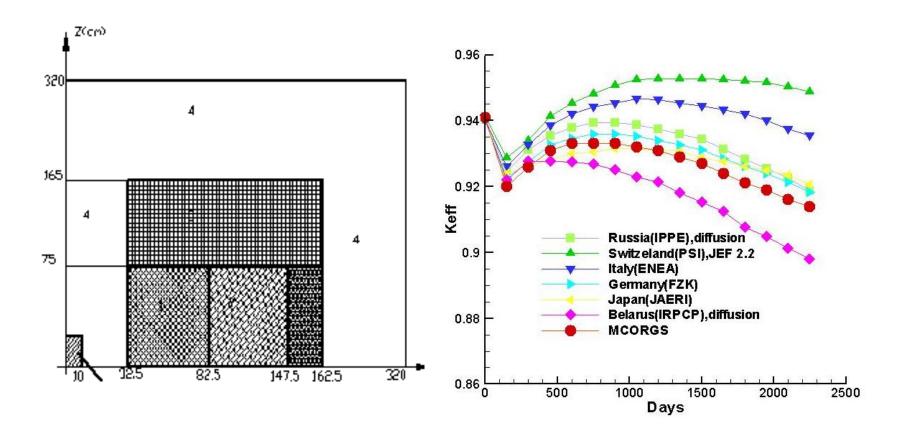
 $\frac{F}{B} = \frac{fissile \text{ material generate rate}}{\text{fissile material consume rate}}$

MCORGS VERIFICATION

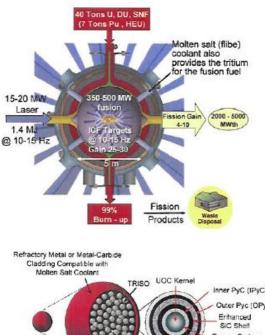

MCORGS HAS BEEN TESTED BY THE FOLLOWING PROBLEMS

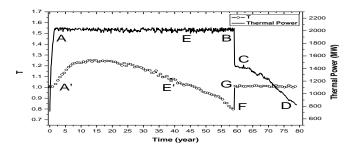
- 1. OECD/NEA burnup credit calculation criticality benchmark phase I-B, 1996, ORNL-6901
- VVER-1000 LEU and MOX assembly computational benchmarks".NEA/NSC/DOC(2002), ISBN 92-64-18491-0
- 3. IAEA ADS benchmark results and analysis". IAEA ADS Benchmark , Madrid: TCM.1999:451-482.
- 4. It is also used to calculate and analysis the following hybrid system the ultra deep burnup hybrid model of Laser Inertial Confinement Fusion Fission Energy(LIFE)
- 5. Analysis the fluid Transmuter model of In-Zineraters.

OECD/NEA Burnup Credit Calculation Criticality Benchmark Phase I-B

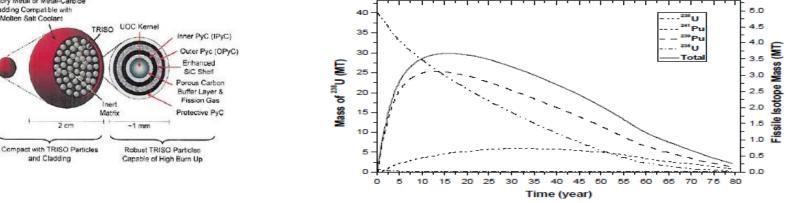

Table 2. Operating history data for benchmark problem pin-cell calculation					Nuclei	MCORGS	Measurement value	MCBURN	Calculation range of 21 sets
					234U	0.125	0.120	0.125	0.0903~0.144
			Boron	Boron	235U	3.378	3.54	3.307	2.934~3.716
Operating	Burntime	Downtime	concentration	concentration	236U	3.608	3.69	3.706	3.641~4.030
cycle	(days)	(days)	(ppm)	(% of cycle 1)	²³⁸ U	825.676	824.9	824.35	823.4~831.6
1	306.0	71.0	331.0	100.0	²³⁷ Np	0.464	0.468	0.493	0.423~0.593
1	200.0	/1.0	551.0	100.0	²³⁸ Pu	0.226	0.2688	0.257	0.166~0.281
2	381.7	83.1	469.7	141.9	²³⁹ Pu	4.042	4.357	4.207	3.659~4.902
3	466.0	85.0	504.1	152.3	²⁴⁰ Pu	2.325	2.543	2.539	2.180~2.661
5					²⁴¹ Pu	0.968	1.02	0.998	0.882~1.111
4	461.1	1870.0	492.5	148.8	²⁴² Pu	0.798	0.8401	0.780	0.596~0.910
					²⁴¹ Am	0.332	N/A	0.338	0.310~0.378
Table 3. Specific power for the three benchmark cases Specific Power					²⁴³ Am	0.183	N/A	0.185	0.163~0.232
					⁹⁵ Mo	0.830	N/A	0.838	0.809~0.874
					99Tc	0.898	N/A	0.885	0.845~0.986
			(kW/kgU)		133Cs	1.270	1.240	1.280	0.972~1.286
					135Cs	0.422	0.43	0.430	0.398~0.461
Case A			Case B	Case C (final burnup =	¹⁴³ Nd	0.764	0.763	0.753	0.740~0.884
	Operating (final burnup		(final burnup =		¹⁴⁵ Nd	0.735	0.744	0.737	0.717~0.756
cycle	27.35 GW	J/MTU) 3.	7.12 GWd/MTU)	44.34 GWd/MTU)	¹⁴⁷ Sm	0.228	N/A	0.196	0.166~0.230
1	17.2	4	24.72	31.12	¹⁴⁹ Sm	0.00209	0.0047	0.00185	0.00184~0.0047
2	19.4	3	26.76	32.51	¹⁵⁰ Sm	0.325	0.361	0.321	0.273~0.398
4	17.4	0	20.10	54.51	¹⁵¹ Sm	0.00929	N/A	0.0112	0.00810~0.0168
3	17.0	4	22.84	26.20	¹⁵² Sm	0.123	0.121	0.128	0.108~0.159
4	14.5	7	18.87	22.12	¹⁵³ Eu	0.140	0.148	0.141	0.121~0.160
4	. 14.5		10.07		155GD	0.00533	N/A	0.00947	0.0034~0.0132

VVER MOX-Gd Benchmark

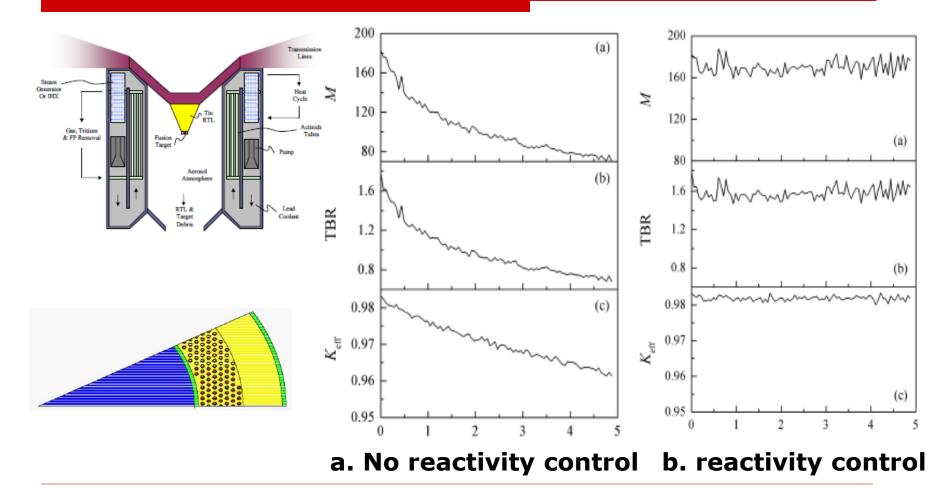



Burnup	k _{of}	$k_{iq'} - \overline{k_{iq'}}$								
MWd/kg HM		MCU	TVS-M	WIMS8A	HELIOS	MULTICELL	MCCOOR	MCORGS		
0	1.135	-0.002	0.000	0.000	0.002	0.000	0.001	0.001		
1	1.1349	-0.001	0.002	0.000	0.005	0.001	0.002	0.001		
2	1.1357	-0.003	0.000	0.000	0.004	0.002	0.002	0.000		
3	1.137	-0.003	0.002	0.001	0.004	0.002	0.002	0.001		
4	1.1373	-0.002	0.000	0.001	0.003	0.002	0.002	0.001		
5	1.1385	-0.003	0.000	0.001	0.003	0.002	0.002	0.001		
6	1.1401	-0.006	0.001	0.001	0.002	0.002	0.001	0.001		
7	1.1413	-0.005	0.001	0.001	0.002	0.002	0.001	0.000		
8	1.14	-0.005	0.002	0.001	0.003	0.001	0.002	0.004		
9	1.1347	-0.006	0.000	0.000	0.003	0.002	0.002	0.000		
10	1.1277	-0.005	0.001	0.000	0.004	0.001	0.002	0.002		
11	1.1185	-0.006	0.001	0.000	0.004	0.002	0.002	0.000		
12	1.1096	-0.005	0.000	0.000	0.004	0.002	0.002	0.003		
13	1.1002	-0.004	0.001	0.000	0.004	0.002	0.002	0.001		
14	1.0915	-0.004	0.001	0.000	0.004	0.002	0.002	0.000		
15	1.0825	-0.003	0.000	0.000	0.004	0.002	0.002	0.000		
20	1.0411	-0.003	0.001	0.001	0.003	0.002	0.002	0.002		
25	1.0036	0.000	0.000	0.001	0.002	0.002	0.002	0.002		
30	0.9689	0.003	0.001	0.002	0.001	0.003	0.002	0.004		
35	0.9371	0.005	0.004	0.004	0.000	0.002	0.004	0.004		
40	0.9065	0.006	0.003	0.004	0.002	0.003	0.004	0.003		

IAEA ADS Benchmark

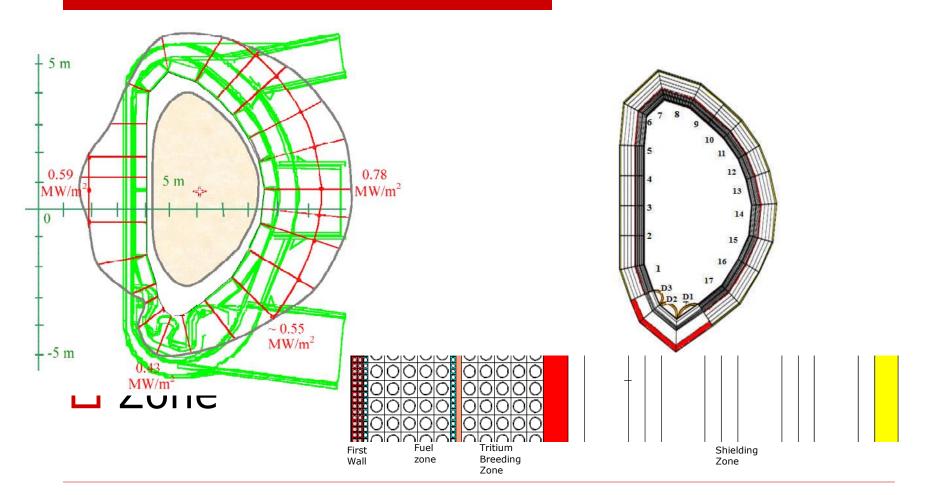


Numerical results of LIFE



Power Control

Numerical results of In-Zinerater


3.Design guide line and the blanket model of FFHR-E

Design guide line of FFHR-E

1.Tritium self-sufficiency. Average TBR in the long run should be greater than 1.15

- 2.M is about 6~10 to maintain 3000MWth in the blanket.
- 3.More fissile material generated than consumed.

The blanket model of FFHR-E

The blanket model

The fusion source

14.1Mev isotropic homogeneous volume neutron source Blanket thermal power is kept at 3,000 MWth

The fission fuel zone

0.3 cm Be/ 2 cm first wall(FW) /1cm separator/12cm fuel zone/1cm separator

hollow pipes in FW and separators, to remove heat by

pumping water in case of an emergency.

The VR of solid part to water is 2:1

Average burnup over 5 years is less than 1%.

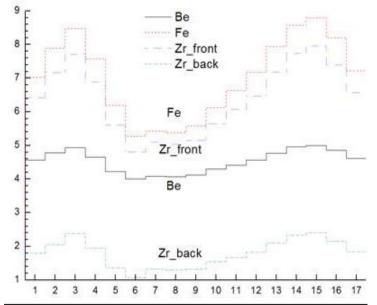
The tritium breeding zone

- □ 15 cm thick
- Li₄SiO₄ is the tritium breeder, the packing ratio is 0.6.
- **\Box** The enrichment of ⁶Li is 90%.
- light water is used to moderate the neutron so as to improve the tritium generation efficiency and reduce the amount of Li₄SiO₄ in the blanket.
- □ The VR of lithium to water is 1:1.

The shield zone

- 68cm thick.
- Fe and light water are arranged alternately.
- neutrons are moderated dramatically by the Light water, so are absorbed in Fe.
- The leakage rate of neutron from the blanket is less than 10⁻⁴.

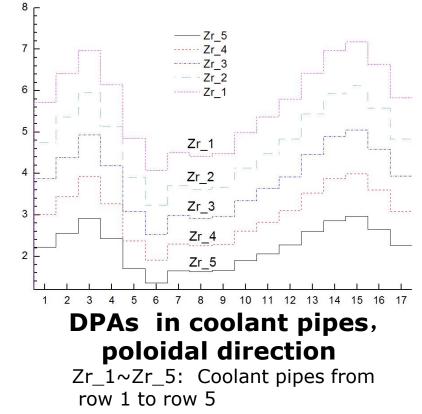
4 Numerical results of FFHR-E


BOC

□ TBR=1.06, M=9.14, F/B=2.27, F-B=0.78.

- fusion power~ 280MW, and 1100Kg fissile material will be bred the first year in FFHR-E.
- both TBR and M will improve in a long time for the better fissile material breeding capability of the blanket.

DPAs from neutron irradiation


Max dpa less than 50 in five years

DPAs in FW, poloidal direction

- Be: plasma facing material
- Fe: FW structure material

Zr_front/back: front/back row emergency pipe

The reprocessing strategy

Decreasing the reprocessing frequency

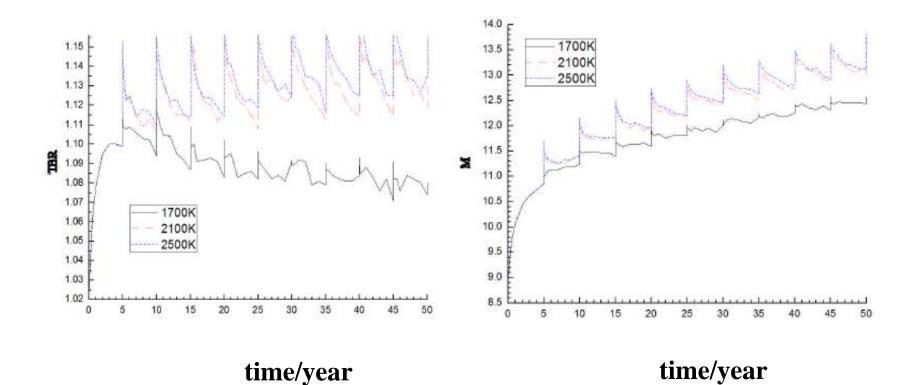
the spent fuel is reused **every 5 years** and 5 tons of depleted uranium is added

Simplifying the reprocessing procedure

heating the spent fuel by the decay heat since the melting point of the alloy is lower than traditional UO_2 fuel. no separation of TRUs remove only part of the fission products

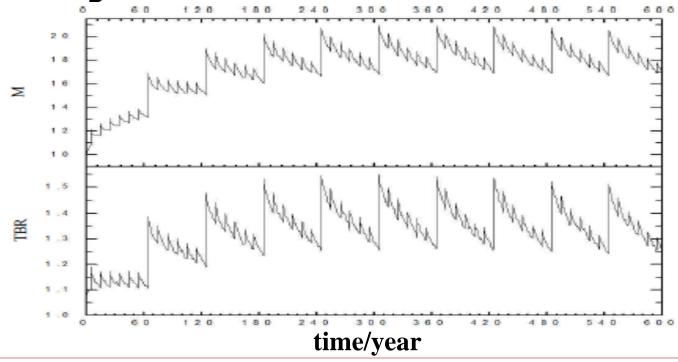
Two kinds of reprocessing Scenarios

1. Only part of fission products are removed.

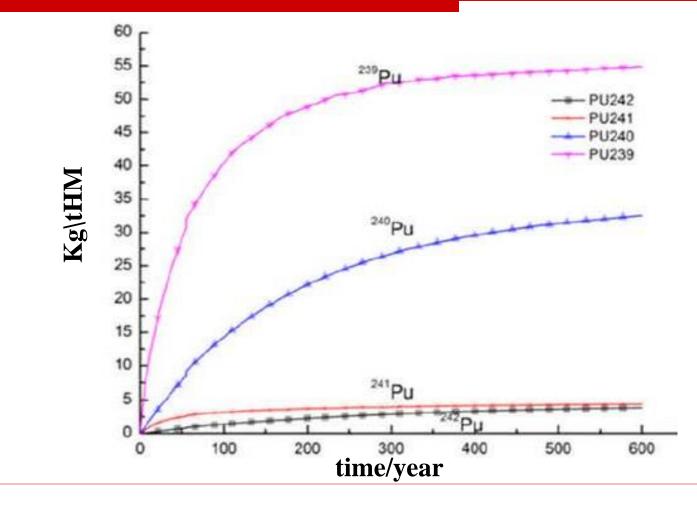

Simplified pyro-reprocessing every 5 years Heat up the spent fuel to a high reprocessing temperature by decay heat, fission product elements whose boiling points are below the temperature will evaporate.

2. All the fission products and no transuranics are removed.

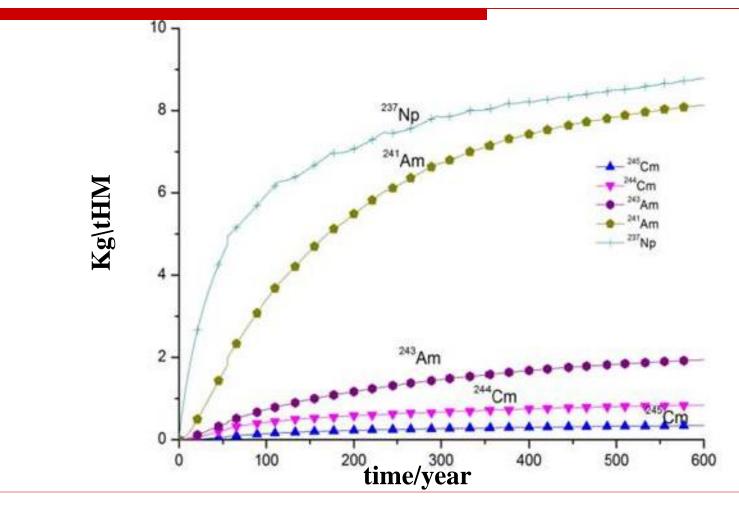
Simplified aqueous-reprocessing or advanced pyroreprocessing every 60 years


The selection of pyro-reprocessing temperature

2100K is highly suggested



The combination of scenarios 1 and 2


In the first 60 years, the average TBR and M are 1.15 and 12. From the second to tenth 60 years, the average TBR and M are above 1.35 and 18.

Plutonium inventory

MA inventory

5 Summary

- MCORGS is used to simulate the Breeding and Burning Process of Plutonium in FFHR-E
- □ **FFHR-E** can accelerate the early application of fusion energy
 - The temperature for simplified pyroreprocessing is suggested to be 2100K
 - The refuelling period is around 10 years; the spent fuel can be reused multiple times so as to make fuller use of natural uranium.

Acknowledgement

THIS RESEARCH IS SPONSORED BY "NATIONAL MAGNETIC CONFINEMENT FUSION ENERGY RESEARCH PROJECT (2015GB108002)"

Thanks